Shape Transformations of Epithelial Shells

Mahim Misra, Basile Audoly, Ioannis G. Kevrekidis, Stanislav Y. Shvartsman

Research output: Contribution to journalArticlepeer-review

49 Scopus citations

Abstract

Regulated deformations of epithelial sheets are frequently foreshadowed by patterning of their mechanical properties. The connection between patterns of cell properties and the emerging tissue deformations is studied in multiple experimental systems, but the general principles remain poorly understood. For instance, it is in general unclear what determines the direction in which the patterned sheet is going to bend and whether the resulting shape transformation will be discontinuous or smooth. Here these questions are explored computationally, using vertex models of epithelial shells assembled from prismlike cells. In response to rings and patches of apical cell contractility, model epithelia smoothly deform into invaginated or evaginated shapes similar to those observed in embryos and tissue organoids. Most of the observed effects can be captured by a simpler model with polygonal cells, modified to include the effects of the apicobasal polarity and natural curvature of epithelia. Our models can be readily extended to include the effects of multiple constraints and used to describe a wide range of morphogenetic processes.

Original languageEnglish (US)
Pages (from-to)1670-1678
Number of pages9
JournalBiophysical Journal
Volume110
Issue number7
DOIs
StatePublished - Apr 12 2016

All Science Journal Classification (ASJC) codes

  • Biophysics

Fingerprint

Dive into the research topics of 'Shape Transformations of Epithelial Shells'. Together they form a unique fingerprint.

Cite this