Shape distributions

Robert Osada, Thomas Funkhouser, Bernard Chazelle, David Dobkin

Research output: Contribution to journalArticlepeer-review

1563 Scopus citations


Measuring the similarity between 3D shapes is a fundamental problem, with applications in computer graphics, computer vision, molecular biology, and a variety of other fields. A challenging aspect of this problem is to find a suitable shape signature that can be constructed and compared quickly, while still discriminating between similar and dissimilar shapes. In this paper, we propose and analyze a method for computing shape signatures for arbitrary (possibly degenerate) 3D polygonal models. The key idea is to represent the signature of an object as a shape distribution sampled from a shape function measuring global geometric properties of an object. The primary motivation for this approach is to reduce the shape matching problem to the comparison of probability distributions, which is simpler than traditional shape matching methods that require pose registration, feature correspondence, or model fitting. We find that the dissimilarities between sampled distributions of simple shape functions (e.g., the distance between two random points on a surface) provide a robust method for discriminating between classes of objects (e.g., cars versus airplanes) in a moderately sized database, despite the presence of arbitrary translations, rotations, scales, mirrors, tessellations, simplifications, and model degeneracies. They can be evaluated quickly, and thus the proposed method could be applied as a pre-classifier in a complete shape-based retrieval or analysis system concerned with finding similar whole objects. The paper describes our early experiences using shape distributions for object classification and for interactive web-based retrieval of 3D models.

Original languageEnglish (US)
Pages (from-to)807-832
Number of pages26
JournalACM Transactions on Graphics
Issue number4
StatePublished - Oct 2002

All Science Journal Classification (ASJC) codes

  • Computer Graphics and Computer-Aided Design


  • Shape analysis
  • Shape representation


Dive into the research topics of 'Shape distributions'. Together they form a unique fingerprint.

Cite this