Setting Up a Large-Eddy Simulation to Focus on the Atmospheric Surface Layer

Einara Zahn, Elie Bou-Zeid

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Large-eddy simulations (LES) above forests and cities typically constrain the simulation domain to the first 10–20% of the Atmospheric Boundary Layer (ABL), aiming to represent the finer details of the roughness elements and sublayer. These simulations are also commonly driven by a constant pressure gradient term in the streamwise direction and zero stress at the top, resulting in an unrealistic fast decay of the total stress profile. In this study, we investigate five LES setups, including pressure and/or top-shear driven flows with and without the Coriolis force, with the aim of identifying which option best represents turbulence profiles in the atmospheric surface layer (ASL). We show that flows driven solely by pressure not only result in a fast-decaying stress profile, but also in lower velocity variances and higher velocity skewnesses. Top-shear driven flows, on the other hand, better replicate ASL statistics. Overall, we recommend, and provide setup guidance for, simulation designs that include both a large scale pressure forcing and a non-zero stress and scalar flux at the top of the domain, and that also represent the Coriolis force. Such setups retain all the forces used in typical full ABL cases and result in the best match of the profiles of various statistical moments.

Original languageEnglish (US)
Article number12
JournalBoundary-Layer Meteorology
Volume190
Issue number3
DOIs
StatePublished - Mar 2024

All Science Journal Classification (ASJC) codes

  • Atmospheric Science

Keywords

  • Canopy flows
  • Large-Eddy simulation
  • Surface layer

Fingerprint

Dive into the research topics of 'Setting Up a Large-Eddy Simulation to Focus on the Atmospheric Surface Layer'. Together they form a unique fingerprint.

Cite this