Abstract
We report the observation of a series of Abelian and non-Abelian topological states in fractional Chern insulators (FCIs). The states appear at bosonic filling ν=k/(C+1) (k,C integers) in several lattice models, in fractionally filled bands of Chern numbers C≥1 subject to on-site Hubbard interactions. We show strong evidence that the k=1 series is Abelian while the k>1 series is non-Abelian. The energy spectrum at both ground-state filling and upon the addition of quasiholes shows a low-lying manifold of states whose total degeneracy and counting matches, at the appropriate size, that of the fractional quantum Hall (FQH) SU(C) (color) singlet k-clustered states (including Halperin, non-Abelian spin singlet states and their generalizations). The ground-state momenta are correctly predicted by the FQH to FCI lattice folding. However, the counting of FCI states also matches that of a spinless FQH series, preventing a clear identification just from the energy spectrum. The entanglement spectrum lends support to the identification of our states as SU(C) color singlets, but offers anomalies in the counting for C>1, possibly related to dislocations that call for the development of alternative counting rules of these topological states.
Original language | English (US) |
---|---|
Article number | 205137 |
Journal | Physical Review B - Condensed Matter and Materials Physics |
Volume | 87 |
Issue number | 20 |
DOIs | |
State | Published - May 29 2013 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics