TY - GEN
T1 - Sequential effects
T2 - 22nd Annual Conference on Neural Information Processing Systems, NIPS 2008
AU - Yu, Angela J.
AU - Cohen, Jonathan D.
PY - 2009
Y1 - 2009
N2 - In a variety of behavioral tasks, subjects exhibit an automatic and apparently suboptimal sequential effect: they respond more rapidly and accurately to a stimulus if it reinforces a local pattern in stimulus history, such as a string of repetitions or alternations, compared to when it violates such a pattern. This is often the case even if the local trends arise by chance in the context of a randomized design, such that stimulus history has no real predictive power. In this work, we use a normative Bayesian framework to examine the hypothesis that such idiosyncrasies may reflect the inadvertent engagement of mechanisms critical for adapting to a changing environment. We show that prior belief in non-stationarity can induce experimentally observed sequential effects in an otherwise Bayes-optimal algorithm. The Bayesian algorithm is shown to be well approximated by linear-exponential filtering of past observations, a feature also apparent in the behavioral data. We derive an explicit relationship between the parameters and computations of the exact Bayesian algorithm and those of the approximate linear-exponential filter. Since the latter is equivalent to a leaky-integration process, a commonly used model of neuronal dynamics underlying perceptual decision-making and trial-to-trial dependencies, our model provides a principled account of why such dynamics are useful. We also show that parameter-tuning of the leaky-integration process is possible, using stochastic gradient descent based only on the noisy binary inputs. This is a proof of concept that not only can neurons implement near-optimal prediction based on standard neuronal dynamics, but that they can also learn to tune the processing parameters without explicitly representing probabilities.
AB - In a variety of behavioral tasks, subjects exhibit an automatic and apparently suboptimal sequential effect: they respond more rapidly and accurately to a stimulus if it reinforces a local pattern in stimulus history, such as a string of repetitions or alternations, compared to when it violates such a pattern. This is often the case even if the local trends arise by chance in the context of a randomized design, such that stimulus history has no real predictive power. In this work, we use a normative Bayesian framework to examine the hypothesis that such idiosyncrasies may reflect the inadvertent engagement of mechanisms critical for adapting to a changing environment. We show that prior belief in non-stationarity can induce experimentally observed sequential effects in an otherwise Bayes-optimal algorithm. The Bayesian algorithm is shown to be well approximated by linear-exponential filtering of past observations, a feature also apparent in the behavioral data. We derive an explicit relationship between the parameters and computations of the exact Bayesian algorithm and those of the approximate linear-exponential filter. Since the latter is equivalent to a leaky-integration process, a commonly used model of neuronal dynamics underlying perceptual decision-making and trial-to-trial dependencies, our model provides a principled account of why such dynamics are useful. We also show that parameter-tuning of the leaky-integration process is possible, using stochastic gradient descent based only on the noisy binary inputs. This is a proof of concept that not only can neurons implement near-optimal prediction based on standard neuronal dynamics, but that they can also learn to tune the processing parameters without explicitly representing probabilities.
UR - http://www.scopus.com/inward/record.url?scp=84858789760&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84858789760&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84858789760
SN - 9781605609492
T3 - Advances in Neural Information Processing Systems 21 - Proceedings of the 2008 Conference
SP - 1873
EP - 1880
BT - Advances in Neural Information Processing Systems 21 - Proceedings of the 2008 Conference
PB - Neural Information Processing Systems
Y2 - 8 December 2008 through 11 December 2008
ER -