Abstract
Future liquid-argon DarkSide-20k and Argo detectors, designed for direct dark matter search, will be sensitive also to core-collapse supernova neutrinos, via coherent elastic neutrino-nucleus scattering. This interaction channel is flavor-insensitive with a high-cross section, enabling for a high-statistics neutrino detection with target masses of ∼50 t and ∼360 t for DarkSide-20k and Argo respectively. Thanks to the low-energy threshold of ∼0.5 keVnr achievable by exploiting the ionization channel, DarkSide-20k and Argo have the potential to discover supernova bursts throughout our galaxy and up to the Small Magellanic Cloud, respectively, assuming a 11-M⊙ progenitor star. We report also on the sensitivity to the neutronization burst, whose electron neutrino flux is suppressed by oscillations when detected via charged current and elastic scattering. Finally, the accuracies in the reconstruction of the average and total neutrino energy in the different phases of the supernova burst, as well as its time profile, are also discussed, taking into account the expected background and the detector response.
Original language | English (US) |
---|---|
Journal | Journal of Cosmology and Astroparticle Physics |
Volume | 2021 |
Issue number | 3 |
DOIs | |
State | Published - Mar 2021 |
All Science Journal Classification (ASJC) codes
- Astronomy and Astrophysics
Keywords
- Dark matter detectors
- Supernova neutrinos
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'Sensitivity of future liquid argon dark matter search experiments to core-collapse supernova neutrinos'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Journal of Cosmology and Astroparticle Physics, Vol. 2021, No. 3, 03.2021.
Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - Sensitivity of future liquid argon dark matter search experiments to core-collapse supernova neutrinos
AU - Agnes, P.
AU - Albergo, S.
AU - Albuquerque, I. F.M.
AU - Alexander, T.
AU - Alici, A.
AU - Alton, A. K.
AU - Amaudruz, P.
AU - Arcelli, S.
AU - Ave, M.
AU - Avetissov, I. Ch
AU - Avetisov, R. I.
AU - Azzolini, O.
AU - Back, H. O.
AU - Balmforth, Z.
AU - Barbarian, V.
AU - Barrado Olmedo, A.
AU - Barrillon, P.
AU - Basco, A.
AU - Batignani, G.
AU - Bondar, A.
AU - Bonivento, W. M.
AU - Borisova, E.
AU - Bottino, B.
AU - Boulay, M. G.
AU - Buccino, G.
AU - Bussino, S.
AU - Busto, J.
AU - Buzulutskov, A.
AU - Cadeddu, M.
AU - Cadoni, M.
AU - Caminata, A.
AU - Canci, N.
AU - Cappello, G.
AU - Caravati, M.
AU - Cárdenas-Montes, M.
AU - Carlini, M.
AU - Carnesecchi, F.
AU - Castello, P.
AU - Catalanotti, S.
AU - Cataudella, V.
AU - Cavalcante, P.
AU - Cavuoti, S.
AU - Cebrian, S.
AU - Cela Ruiz, J. M.
AU - Celano, B.
AU - Chashin, S.
AU - Chepurnov, A.
AU - Chyhyrynets, E.
AU - Cicalò, C.
AU - Cifarelli, L.
AU - Cintas, D.
AU - Coccetti, F.
AU - Cocco, V.
AU - Colocci, M.
AU - E. Conde Vilda, Conde Vilda
AU - Consiglio, L.
AU - Copello, S.
AU - Corning, J.
AU - Covone, G.
AU - Czudak, P.
AU - D'Auria, S.
AU - Da Rocha Rolo, M. D.
AU - Dadoun, O.
AU - Daniel, M.
AU - Davini, S.
AU - De Candia, A.
AU - De Cecco, S.
AU - De Falco, A.
AU - De Filippis, G.
AU - De Gruttola, D.
AU - De Guido, G.
AU - De Rosa, G.
AU - Della Valle, M.
AU - Dellacasa, G.
AU - De Pasquale, S.
AU - Derbin, A. V.
AU - Devoto, A.
AU - Di Noto, L.
AU - Dionisi, C.
AU - Di Stefano, P.
AU - Dolganov, G.
AU - Dordei, F.
AU - Doria, L.
AU - Downing, M.
AU - Erjavec, T.
AU - Fernandez Diaz, M.
AU - Fiorillo, G.
AU - Franceschi, A.
AU - Franco, D.
AU - Frolov, E.
AU - Funicello, N.
AU - Gabriele, F.
AU - Galbiati, C.
AU - Garbini, M.
AU - Garcia Abia, P.
AU - Gendotti, A.
AU - Ghiano, C.
AU - Giampaolo, R. A.
AU - Giganti, C.
AU - Giorgi, M. A.
AU - Giovanetti, G. K.
AU - Goicoechea Casanueva, V.
AU - Gola, A.
AU - Graciani Diaz, R.
AU - Grigoriev, G. Y.
AU - Grobov, A.
AU - Gromov, M.
AU - Guan, M.
AU - Guerzoni, M.
AU - Gulino, M.
AU - Guo, C.
AU - Hackett, B. R.
AU - Hallin, A.
AU - Haranczyk, M.
AU - Hill, S.
AU - Horikawa, S.
AU - Hubaut, F.
AU - Hugues, T.
AU - Hungerford, E. V.
AU - Ianni, An
AU - Ippolito, V.
AU - James, C. C.
AU - Jillings, C.
AU - Kachru, P.
AU - Kemp, A. A.
AU - Kendziora, C. L.
AU - Keppel, G.
AU - Khomyakov, A. V.
AU - Kim, S.
AU - Kish, A.
AU - Kochanek, I.
AU - Kondo, K.
AU - Korga, G.
AU - Kubankin, A.
AU - Kugathasan, R.
AU - Kuss, M.
AU - Kuzniak, M.
AU - La Commara, M.
AU - Lai, M.
AU - Langrock, S.
AU - Leyton, M.
AU - Li, X.
AU - Lidey, L.
AU - Lissia, M.
AU - Longo, G.
AU - Machulin, I. N.
AU - Mapelli, L.
AU - Marasciulli, A.
AU - Margotti, A.
AU - Mari, S. M.
AU - Maricic, J.
AU - Martínez, M.
AU - Martinez Rojas, A. D.
AU - Martoff, C. J.
AU - Masoni, A.
AU - Mazzi, A.
AU - McDonald, A. B.
AU - Mclaughlin, J.
AU - Messina, A.
AU - Meyers, P. D.
AU - Miletic, T.
AU - Milincic, R.
AU - Moggi, A.
AU - Moharana, A.
AU - Moioli, S.
AU - Monroe, J.
AU - Morisi, S.
AU - Morrocchi, M.
AU - Mozhevitina, E. N.
AU - Mróz, T.
AU - Muratova, V. N.
AU - Muscas, C.
AU - Musenich, L.
AU - Musico, P.
AU - Nania, R.
AU - Napolitano, T.
AU - Navrer Agasson, A.
AU - Nessi, M.
AU - Nikulin, I.
AU - Nowak, J.
AU - Oleinik, A.
AU - Oleynikov, V.
AU - Pagani, L.
AU - Pallavicini, M.
AU - Pandola, L.
AU - Pantic, E.
AU - Paoloni, E.
AU - Paternoster, G.
AU - Pegoraro, P. A.
AU - Pelczar, K.
AU - Pellegrini, L. A.
AU - Pellegrino, C.
AU - Perotti, F.
AU - Pesudo, V.
AU - Picciau, E.
AU - Pietropaolo, F.
AU - Pira, C.
AU - Pocar, A.
AU - Poehlmann, D. M.
AU - Pordes, S.
AU - Poudel, S. S.
AU - Pralavorio, P.
AU - Price, D.
AU - Raffaelli, F.
AU - Ragusa, F.
AU - Ramirez, A.
AU - Razeti, M.
AU - Razeto, A.
AU - Renshaw, A. L.
AU - Rescia, S.
AU - Rescigno, M.
AU - Resnati, F.
AU - Retiere, F.
AU - Rignanese, L. P.
AU - Ripoli, C.
AU - Rivetti, A.
AU - Rode, J.
AU - Romero, L.
AU - Rossi, M.
AU - Rubbia, A.
AU - Salatino, P.
AU - Samoylov, O.
AU - Sánchez García, E.
AU - Sandford, E.
AU - Sanfilippo, S.
AU - Santone, D.
AU - Santorelli, R.
AU - Savarese, C.
AU - Scapparone, E.
AU - Schlitzer, B.
AU - Scioli, G.
AU - Semenov, D. A.
AU - Shaw, B.
AU - Shchagin, A.
AU - Sheshukov, A.
AU - Simeone, M.
AU - Skensved, P.
AU - Skorokhvatov, M. D.
AU - Smirnov, O.
AU - Smith, B.
AU - Sokolov, A.
AU - Steri, A.
AU - Stracka, S.
AU - Strickland, V.
AU - Stringer, M.
AU - Sulis, S.
AU - Suvorov, Y.
AU - Szelc, A. M.
AU - Tartaglia, R.
AU - Testera, G.
AU - Thorpe, T. N.
AU - Tonazzo, A.
AU - Torres-Lara, S.
AU - Tricomi, A.
AU - Unzhakov, E. V.
AU - Usai, G.
AU - Vallivilayil John, T.
AU - Viant, T.
AU - Viel, S.
AU - Vishneva, A.
AU - Vogelaar, R. B.
AU - Wada, M.
AU - Wang, H.
AU - Wang, Y.
AU - Westerdale, S.
AU - Wheadon, R. J.
AU - Williams, L.
AU - Wojcik, Ma M.
AU - Wojcik, Ma
AU - Xiao, X.
AU - Yang, C.
AU - Ye, Z.
AU - Zani, A.
AU - Zichichi, A.
AU - Zuzel, G.
AU - Zykova, M. P.
N1 - Publisher Copyright: © 2021 IOP Publishing Ltd and Sissa Medialab.
PY - 2021/3
Y1 - 2021/3
N2 - Future liquid-argon DarkSide-20k and Argo detectors, designed for direct dark matter search, will be sensitive also to core-collapse supernova neutrinos, via coherent elastic neutrino-nucleus scattering. This interaction channel is flavor-insensitive with a high-cross section, enabling for a high-statistics neutrino detection with target masses of ∼50 t and ∼360 t for DarkSide-20k and Argo respectively. Thanks to the low-energy threshold of ∼0.5 keVnr achievable by exploiting the ionization channel, DarkSide-20k and Argo have the potential to discover supernova bursts throughout our galaxy and up to the Small Magellanic Cloud, respectively, assuming a 11-M⊙ progenitor star. We report also on the sensitivity to the neutronization burst, whose electron neutrino flux is suppressed by oscillations when detected via charged current and elastic scattering. Finally, the accuracies in the reconstruction of the average and total neutrino energy in the different phases of the supernova burst, as well as its time profile, are also discussed, taking into account the expected background and the detector response.
AB - Future liquid-argon DarkSide-20k and Argo detectors, designed for direct dark matter search, will be sensitive also to core-collapse supernova neutrinos, via coherent elastic neutrino-nucleus scattering. This interaction channel is flavor-insensitive with a high-cross section, enabling for a high-statistics neutrino detection with target masses of ∼50 t and ∼360 t for DarkSide-20k and Argo respectively. Thanks to the low-energy threshold of ∼0.5 keVnr achievable by exploiting the ionization channel, DarkSide-20k and Argo have the potential to discover supernova bursts throughout our galaxy and up to the Small Magellanic Cloud, respectively, assuming a 11-M⊙ progenitor star. We report also on the sensitivity to the neutronization burst, whose electron neutrino flux is suppressed by oscillations when detected via charged current and elastic scattering. Finally, the accuracies in the reconstruction of the average and total neutrino energy in the different phases of the supernova burst, as well as its time profile, are also discussed, taking into account the expected background and the detector response.
KW - Dark matter detectors
KW - Supernova neutrinos
UR - http://www.scopus.com/inward/record.url?scp=85103534647&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85103534647&partnerID=8YFLogxK
U2 - 10.1088/1475-7516/2021/03/043
DO - 10.1088/1475-7516/2021/03/043
M3 - Article
AN - SCOPUS:85103534647
SN - 1475-7516
VL - 2021
JO - Journal of Cosmology and Astroparticle Physics
JF - Journal of Cosmology and Astroparticle Physics
IS - 3
ER -