Abstract
A variety of observational and modeling studies show that changes in the Atlantic meridional overturning circulation (AMOC) can induce rapid global-scale climate change. In particular, a substantially weakened AMOC leads to a southward shift of the intertropical convergence zone (ITCZ) in both the Atlantic and the Pacific Oceans. However, the simulated amplitudes of the AMOC-induced tropical climate change differ substantially among different models. In this paper, the sensitivity to cloud feedback of the climate response to a change in the AMOC is studied using a coupled ocean-atmosphere model [the GFDL Coupled Model, version 2.1 (CM2.1)]. Without cloud feedback, the simulated AMOC-induced climate change in this model is weakened substantially. Low-cloud feedback has a strong amplifying impact on the tropical ITCZ shift in this model, whereas the effects of high-cloud feedback are weaker. It is concluded that cloud feedback is an important contributor to the uncertainty in the global response to AMOC changes.
Original language | English (US) |
---|---|
Pages (from-to) | 378-389 |
Number of pages | 12 |
Journal | Journal of Climate |
Volume | 23 |
Issue number | 2 |
DOIs | |
State | Published - Jan 2010 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Atmospheric Science