Sensitive-sample fingerprinting of deep neural networks

Zecheng He, Tianwei Zhang, Ruby Lee

Research output: Chapter in Book/Report/Conference proceedingConference contribution

51 Scopus citations

Abstract

Numerous cloud-based services are provided to help customers develop and deploy deep learning applications. When a customer deploys a deep learning model in the cloud and serves it to end-users, it is important to be able to verify that the deployed model has not been tampered with. In this paper, we propose a novel and practical methodology to verify the integrity of remote deep learning models, with only black-box access to the target models. Specifically, we define Sensitive-Sample fingerprints, which are a small set of human unnoticeable transformed inputs that make the model outputs sensitive to the model's parameters. Even small model changes can be clearly reflected in the model outputs. Experimental results on different types of model integrity attacks show that we proposed approach is both effective and efficient. It can detect model integrity breaches with high accuracy (>99.95%) and guaranteed zero false positives on all evaluated attacks. Meanwhile, it only requires up to 103X fewer model inferences, compared with non-sensitive samples.

Original languageEnglish (US)
Title of host publicationProceedings - 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019
PublisherIEEE Computer Society
Pages4724-4732
Number of pages9
ISBN (Electronic)9781728132938
DOIs
StatePublished - Jun 2019
Event32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019 - Long Beach, United States
Duration: Jun 16 2019Jun 20 2019

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2019-June
ISSN (Print)1063-6919

Conference

Conference32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019
Country/TerritoryUnited States
CityLong Beach
Period6/16/196/20/19

All Science Journal Classification (ASJC) codes

  • Software
  • Computer Vision and Pattern Recognition

Keywords

  • Deep Learning
  • Others

Fingerprint

Dive into the research topics of 'Sensitive-sample fingerprinting of deep neural networks'. Together they form a unique fingerprint.

Cite this