Semi-parametric tensor factor analysis by iteratively projected singular value decomposition

Elynn Y. Chen, Dong Xia, Chencheng Cai, Jianqing Fan

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

This paper introduces a general framework of Semi-parametric TEnsor Factor Analysis (STEFA) that focuses on the methodology and theory of low-rank tensor decomposition with auxiliary covariates. Semi-parametric TEnsor Factor Analysis models extend tensor factor models by incorporating auxiliary covariates in the loading matrices. We propose an algorithm of iteratively projected singular value decomposition (IP-SVD) for the semi-parametric estimation. It iteratively projects tensor data onto the linear space spanned by the basis functions of covariates and applies singular value decomposition on matricized tensors over each mode. We establish the convergence rates of the loading matrices and the core tensor factor. The theoretical results only require a sub-exponential noise distribution, which is weaker than the assumption of sub-Gaussian tail of noise in the literature. Compared with the Tucker decomposition, IP-SVD yields more accurate estimators with a faster convergence rate. Besides estimation, we propose several prediction methods with new covariates based on the STEFA model. On both synthetic and real tensor data, we demonstrate the efficacy of the STEFA model and the IP-SVD algorithm on both the estimation and prediction tasks.

Original languageEnglish (US)
Pages (from-to)793-823
Number of pages31
JournalJournal of the Royal Statistical Society. Series B: Statistical Methodology
Volume86
Issue number3
DOIs
StatePublished - Jul 2024
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Statistics and Probability
  • Statistics, Probability and Uncertainty

Keywords

  • Tucker decomposition
  • conditional factor models
  • semi-parametric approximation
  • tensor factor models
  • tensor learning

Fingerprint

Dive into the research topics of 'Semi-parametric tensor factor analysis by iteratively projected singular value decomposition'. Together they form a unique fingerprint.

Cite this