Self-learning scene-specific pedestrian detectors using a progressive latent model

Qixiang Ye, Tianliang Zhang, Wei Ke, Qiang Qiu, Jie Chen, Guillermo Sapiro, Baochang Zhang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

25 Scopus citations

Abstract

In this paper, a self-learning approach is proposed towards solving scene-specific pedestrian detection problem without any human' annotation involved. The self-learning approach is deployed as progressive steps of object discovery, object enforcement, and label propagation. In the learning procedure, object locations in each frame are treated as latent variables that are solved with a progressive latent model (PLM). Compared with conventional latent models, the proposed PLM incorporates a spatial regularization term to reduce ambiguities in object proposals and to enforce object localization, and also a graph-based label propagation to discover harder instances in adjacent frames. With the difference of convex (DC) objective functions, PLM can be efficiently optimized with a concave-convex programming and thus guaranteeing the stability of self-learning. Extensive experiments demonstrate that even without annotation the proposed self-learning approach outperforms weakly supervised learning approaches, while achieving comparable performance with transfer learning and fully supervised approaches.

Original languageEnglish (US)
Title of host publicationProceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2057-2066
Number of pages10
ISBN (Electronic)9781538604571
DOIs
StatePublished - Nov 6 2017
Externally publishedYes
Event30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017 - Honolulu, United States
Duration: Jul 21 2017Jul 26 2017

Publication series

NameProceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
Volume2017-January

Other

Other30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
Country/TerritoryUnited States
CityHonolulu
Period7/21/177/26/17

All Science Journal Classification (ASJC) codes

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Self-learning scene-specific pedestrian detectors using a progressive latent model'. Together they form a unique fingerprint.

Cite this