Self-hydrogenated shell promoting photocatalytic H2 evolution on anatase TiO2

Yue Lu, Wen Jin Yin, Kai Lin Peng, Kuan Wang, Qi Hu, Annabella Selloni, Fu Rong Chen, Li Min Liu, Man Ling Sui

Research output: Contribution to journalArticlepeer-review

186 Scopus citations


As one of the most important photocatalysts, TiO2 has triggered broad interest and intensive studies for decades. Observation of the interfacial reactions between water and TiO2 at microscopic scale can provide key insight into the mechanisms of photocatalytic processes. Currently, experimental methodologies for characterizing photocatalytic reactions of anatase TiO2 are mostly confined to water vapor or single molecule chemistry. Here, we investigate the photocatalytic reaction of anatase TiO2 nanoparticles in water using liquid environmental transmission electron microscopy. A self-hydrogenated shell is observed on the TiO2 surface before the generation of hydrogen bubbles. First-principles calculations suggest that this shell is formed through subsurface diffusion of photo-reduced water protons generated at the aqueous TiO2 interface, which promotes photocatalytic hydrogen evolution by reducing the activation barrier for H2 (H-H bond) formation. Experiments confirm that the self-hydrogenated shell contains reduced titanium ions, and its thickness can increase to several nanometers with increasing UV illuminance.

Original languageEnglish (US)
Article number2752
JournalNature communications
Issue number1
StatePublished - Dec 1 2018

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy


Dive into the research topics of 'Self-hydrogenated shell promoting photocatalytic H2 evolution on anatase TiO2'. Together they form a unique fingerprint.

Cite this