Self-consistent trajectory autoencoder: Hierarchical reinforcement learning with trajectory embeddings

John D. Co-Reyes, Yu Xuan Liu, Abhishek Gupta, Benjamin Eysenbach, Pieter Abbeel, Sergey Levine

Research output: Chapter in Book/Report/Conference proceedingConference contribution

34 Scopus citations

Abstract

In this work, we take a representation learning perspective on hierarchical reinforcement learning, where the problem of learning lower layers in a hierarchy is transformed into the problem of learning trajectory-level generative models. We show that we can learn continuous latent representations of trajectories, which are effective in solving temporally extended and multi-stage problems. Our proposed model, SeCTAR, draws inspiration from variational autoencoders, and learns latent representations of trajectories. A key component of this method is to learn both a latent-conditioned policy and a latent-conditioned model which are consistent with each other. Given the same latent, the policy generates a trajectory which should match the trajectory predicted by the model. This model provides a built-in prediction mechanism, by predicting the outcomc of closcd loop policy behavior. We propose a novel algorithm for performing hierarchical RL with this model, combining model-based planning in the learned latent space with an unsupervised exploration objective. We show that our model is effective at reasoning over long horizons with sparse rewards for several simulated tasks, outperforming standard reinforcement learning methods and prior methods for hierarchical reasoning, model-based planning, and exploration.

Original languageEnglish (US)
Title of host publication35th International Conference on Machine Learning, ICML 2018
EditorsAndreas Krause, Jennifer Dy
PublisherInternational Machine Learning Society (IMLS)
Pages1637-1647
Number of pages11
ISBN (Electronic)9781510867963
StatePublished - 2018
Externally publishedYes
Event35th International Conference on Machine Learning, ICML 2018 - Stockholm, Sweden
Duration: Jul 10 2018Jul 15 2018

Publication series

Name35th International Conference on Machine Learning, ICML 2018
Volume3

Other

Other35th International Conference on Machine Learning, ICML 2018
Country/TerritorySweden
CityStockholm
Period7/10/187/15/18

All Science Journal Classification (ASJC) codes

  • Computational Theory and Mathematics
  • Human-Computer Interaction
  • Software

Fingerprint

Dive into the research topics of 'Self-consistent trajectory autoencoder: Hierarchical reinforcement learning with trajectory embeddings'. Together they form a unique fingerprint.

Cite this