Self-assembly of tessellated tissue sheets by expansion and collision

Matthew A. Heinrich, Ricard Alert, Abraham E. Wolf, Andrej Košmrlj, Daniel J. Cohen

Research output: Contribution to journalArticlepeer-review

8 Scopus citations


Tissues do not exist in isolation—they interact with other tissues within and across organs. While cell-cell interactions have been intensely investigated, less is known about tissue-tissue interactions. Here, we studied collisions between monolayer tissues with different geometries, cell densities, and cell types. First, we determine rules for tissue shape changes during binary collisions and describe complex cell migration at tri-tissue boundaries. Next, we propose that genetically identical tissues displace each other based on pressure gradients, which are directly linked to gradients in cell density. We present a physical model of tissue interactions that allows us to estimate the bulk modulus of the tissues from collision dynamics. Finally, we introduce TissEllate, a design tool for self-assembling complex tessellations from arrays of many tissues, and we use cell sheet engineering techniques to transfer these composite tissues like cellular films. Overall, our work provides insight into the mechanics of tissue collisions, harnessing them to engineer tissue composites as designable living materials.

Original languageEnglish (US)
Article number4026
JournalNature communications
Issue number1
StatePublished - Dec 2022

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy


Dive into the research topics of 'Self-assembly of tessellated tissue sheets by expansion and collision'. Together they form a unique fingerprint.

Cite this