Abstract
Biomolecular condensates self-assemble when proteins and nucleic acids spontaneously demix to form droplets within the crowded intracellular milieu. This simple mechanism underlies the formation of a wide variety of membraneless compartments in living cells. To understand how multiple condensates with distinct compositions can self-assemble in such a heterogeneous system, which may not be at thermodynamic equilibrium, we study a minimal model in which we can "program"the pairwise interactions among hundreds of species. We show that the number of distinct condensates that can be reliably assembled grows superlinearly with the number of species in the mixture when the condensates share components. Furthermore, we show that we can predict the maximum number of distinct condensates in a mixture without knowing the details of the pairwise interactions. Simulations of condensate growth confirm these predictions and suggest that the physical rules governing the achievable complexity of condensate-mediated spatial organization are broadly applicable to biomolecular mixtures.
Original language | English (US) |
---|---|
Article number | 258101 |
Journal | Physical review letters |
Volume | 126 |
Issue number | 25 |
DOIs | |
State | Published - Jun 25 2021 |
All Science Journal Classification (ASJC) codes
- General Physics and Astronomy