TY - GEN
T1 - Self-assembled nanostructured materials for energy conversion and storage
AU - Liu, Jun
AU - Wang, Donghai
AU - Aksay, Ilhan A.
AU - Kou, Rong
AU - Yang, Zhengguo
AU - Choi, Daiwon
PY - 2009
Y1 - 2009
N2 - This talk will discuss our effort to develop new approaches to control the synthesis and assembly of multicomponent, multifunctional materials for energy conversion and storage. In the literature, solution based synthesis and self-assembly techniques are widely studied for the synthesis of nanostructured materials, but these methods are usually more effective for the preparation of simple, single phase materials. For energy applications, the performance depends on more than one property, such as redox activity, conductivity, mechanical property and stability. Here, we will discuss how the solution synthesis approach can be used for the self-assembly of true multicomponent and multiphase materials/devices. These new materials are made of ordered arrays of different types of nanostructured materials rather than randomly mixed components which can be obtained from traditional mixing techniques. The nucleation and growth kinetics and the fundamental interfacial interactions that determine the multicomponent self-assembly process, and the applications of the new materials in energy conversion and storage, will be reviewed.
AB - This talk will discuss our effort to develop new approaches to control the synthesis and assembly of multicomponent, multifunctional materials for energy conversion and storage. In the literature, solution based synthesis and self-assembly techniques are widely studied for the synthesis of nanostructured materials, but these methods are usually more effective for the preparation of simple, single phase materials. For energy applications, the performance depends on more than one property, such as redox activity, conductivity, mechanical property and stability. Here, we will discuss how the solution synthesis approach can be used for the self-assembly of true multicomponent and multiphase materials/devices. These new materials are made of ordered arrays of different types of nanostructured materials rather than randomly mixed components which can be obtained from traditional mixing techniques. The nucleation and growth kinetics and the fundamental interfacial interactions that determine the multicomponent self-assembly process, and the applications of the new materials in energy conversion and storage, will be reviewed.
UR - http://www.scopus.com/inward/record.url?scp=78649792659&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=78649792659&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:78649792659
SN - 9780841200050
T3 - ACS National Meeting Book of Abstracts
BT - American Chemical Society - 238th National Meeting and Exposition, ACS 2009, Abstracts of Scientific Papers
T2 - 238th National Meeting and Exposition of the American Chemical Society, ACS 2009
Y2 - 16 August 2009 through 20 August 2009
ER -