Abstract
Fungal peroxygenases are novel extracellular heme-thiolate biocatalysts that are capable of catalyzing the selective monooxygenation of diverse organic compounds, using only H2O2 as a cosubstrate. Little is known about the physiological role or the catalytic mechanism of these enzymes. We have found that the peroxygenase secreted by Agrocybe aegerita catalyzes the H2O2-dependent hydroxylation of linear alkanes at the 2-position and 3-position with high efficiency, as well as the regioselective monooxygenation of branched and cyclic alkanes. Experiments with n-heptane and n-octane showed that the hydroxylation proceeded with complete stereoselectivity for the (R)-enantiomer of the corresponding 3-alcohol. Investigations with a number of model substrates provided information about the route of alkane hydroxylation: (a) the hydroxylation of cyclohexane mediated by H 218O2 resulted in complete incorporation of 18O into the hydroxyl group of the product cyclohexanol; (b) the hydroxylation of n-hexane-1,1,1,2,2,3,3-D7 showed a large intramolecular deuterium isotope effect [(kH/kD) obs] of 16.0 ± 1.0 for 2-hexanol and 8.9 ± 0.9 for 3-hexanol; and (c) the hydroxylation of the radical clock norcarane led to an estimated radical lifetime of 9.4 ps and an oxygen rebound rate of 1.06 à- 1011 s-1. These results point to a hydrogen abstraction and oxygen rebound mechanism for alkane hydroxylation. The peroxygenase appeared to lack activity on long-chain alkanes (> C 16) and highly branched alkanes (e.g. tetramethylpentane), but otherwise exhibited a broad substrate range. It may accordingly have a role in the bioconversion of natural and anthropogenic alkane-containing structures (including alkyl chains of complex biomaterials) in soils, plant litter, and wood. We have found that the peroxygenase secreted by Agrocybe aegerita catalyzes the H2O2-dependent hydroxylation of linear alkanes at the 2- and 3-position with high efficiency as well as the regioselective monooxygenation of branched and cyclic alkanes. In addition, we report data for peroxygenase solvent stability tests, chiral separations, an H218O2-labelling study, intramolecular deuterium isotope effect determinations and radical clock experiments.
Original language | English (US) |
---|---|
Pages (from-to) | 3667-3675 |
Number of pages | 9 |
Journal | FEBS Journal |
Volume | 278 |
Issue number | 19 |
DOIs | |
State | Published - Oct 2011 |
All Science Journal Classification (ASJC) codes
- Molecular Biology
- Biochemistry
- Cell Biology
Keywords
- P450
- alkane
- hydroxylation
- peroxygenase
- radical clock