Abstract
Electronic Mach-Zehnder interferometers in the quantum Hall (QH) regime are currently discussed for the realization of quantum information schemes. A recently proposed device architecture employs interference between two co-propagating edge channels. Here we demonstrate the precise control of individual edge-channel trajectories in quantum point contact devices in the QH regime. The biased tip of an atomic force microscope is used as a moveable local gate to pilot individual edge channels. Our results are discussed in light of the implementation of multi-edge interferometers.
Original language | English (US) |
---|---|
Pages (from-to) | 1038-1041 |
Number of pages | 4 |
Journal | Physica E: Low-Dimensional Systems and Nanostructures |
Volume | 42 |
Issue number | 4 |
DOIs | |
State | Published - Feb 2010 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Atomic and Molecular Physics, and Optics
- Condensed Matter Physics
Keywords
- Edge channels
- Quantum Hall effect
- Quantum point contact
- Scanning gate microscopy