TY - JOUR
T1 - Seismic wavefield imaging of Earth’s interior across scales
AU - Tromp, Jeroen
N1 - Funding Information:
The author is grateful to S. Operto and S. Beller for their feedback and input on controlled-source seismology applications of full-waveform inversion and for contributing figures. W. Lei and Y. Ruan also contributed figures to this article. Comments and suggestions by the reviewers helped improve an earlier version of the manuscript. This research used the resources of the Oak Ridge Leadership Computing Facility, which is a US Department of Energy Office of Science User Facility supported under contract DE-AC05-00OR22725. Additional computational resources were provided by the Princeton Institute for Computational Science and Engineering (PICSciE).
Publisher Copyright:
© 2019, Springer Nature Limited.
PY - 2020/1
Y1 - 2020/1
N2 - Seismic full-waveform inversion (FWI) for imaging Earth’s interior was introduced in the late 1970s. Its ultimate goal is to use all of the information in a seismogram to understand the structure and dynamics of Earth, such as hydrocarbon reservoirs, the nature of hotspots and the forces behind plate motions and earthquakes. Thanks to developments in high-performance computing and advances in modern numerical methods in the past 10 years, 3D FWI has become feasible for a wide range of applications and is currently used across nine orders of magnitude in frequency and wavelength. A typical FWI workflow includes selecting seismic sources and a starting model, conducting forward simulations, calculating and evaluating the misfit, and optimizing the simulated model until the observed and modelled seismograms converge on a single model. This method has revealed Pleistocene ice scrapes beneath a gas cloud in the Valhall oil field, overthrusted Iberian crust in the western Pyrenees mountains, deep slabs in subduction zones throughout the world and the shape of the African superplume. The increased use of multi-parameter inversions, improved computational and algorithmic efficiency, and the inclusion of Bayesian statistics in the optimization process all stand to substantially improve FWI, overcoming current computational or data-quality constraints. In this Technical Review, FWI methods and applications in controlled-source and earthquake seismology are discussed, followed by a perspective on the future of FWI, which will ultimately result in increased insight into the physics and chemistry of Earth’s interior.
AB - Seismic full-waveform inversion (FWI) for imaging Earth’s interior was introduced in the late 1970s. Its ultimate goal is to use all of the information in a seismogram to understand the structure and dynamics of Earth, such as hydrocarbon reservoirs, the nature of hotspots and the forces behind plate motions and earthquakes. Thanks to developments in high-performance computing and advances in modern numerical methods in the past 10 years, 3D FWI has become feasible for a wide range of applications and is currently used across nine orders of magnitude in frequency and wavelength. A typical FWI workflow includes selecting seismic sources and a starting model, conducting forward simulations, calculating and evaluating the misfit, and optimizing the simulated model until the observed and modelled seismograms converge on a single model. This method has revealed Pleistocene ice scrapes beneath a gas cloud in the Valhall oil field, overthrusted Iberian crust in the western Pyrenees mountains, deep slabs in subduction zones throughout the world and the shape of the African superplume. The increased use of multi-parameter inversions, improved computational and algorithmic efficiency, and the inclusion of Bayesian statistics in the optimization process all stand to substantially improve FWI, overcoming current computational or data-quality constraints. In this Technical Review, FWI methods and applications in controlled-source and earthquake seismology are discussed, followed by a perspective on the future of FWI, which will ultimately result in increased insight into the physics and chemistry of Earth’s interior.
UR - http://www.scopus.com/inward/record.url?scp=85108540723&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85108540723&partnerID=8YFLogxK
U2 - 10.1038/s43017-019-0003-8
DO - 10.1038/s43017-019-0003-8
M3 - Review article
AN - SCOPUS:85108540723
SN - 2662-138X
VL - 1
SP - 40
EP - 53
JO - Nature Reviews Earth and Environment
JF - Nature Reviews Earth and Environment
IS - 1
ER -