Abstract
This paper presents an approach to enhance conformational sampling of proteins employing stochastic algorithms such as Monte Carlo (MC) methods. The approach is based on a mechanistic representation of proteins and on the application of methods originating from robotics. We outline the general ideas of our approach and detail how it can be applied to construct several MC move classes, all operating on a shared representation of the molecule and using a single mathematical solver. We showcase these sampling techniques on several types of proteins. Results show that combining several move classes, which can be easily implemented thanks to the proposed approach, significantly improves sampling efficiency.
Original language | English (US) |
---|---|
Article number | 373 |
Journal | Molecules |
Volume | 23 |
Issue number | 2 |
DOIs | |
State | Published - 2018 |
All Science Journal Classification (ASJC) codes
- Drug Discovery
- Analytical Chemistry
- Chemistry (miscellaneous)
- Molecular Medicine
- Physical and Theoretical Chemistry
- Pharmaceutical Science
- Organic Chemistry
Keywords
- Conformational sampling
- Monte Carlo
- Proteins
- Robotics-inspired approach