Securing Parallel-chain Protocols under Variable Mining Power

Xuechao Wang, Viswa Virinchi Muppirala, Lei Yang, Sreeram Kannan, Pramod Viswanath

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

Several emerging proof-of-work (PoW) blockchain protocols rely on a ''parallel-chain'' architecture for scaling, where instead of a single chain, multiple chains are run in parallel and aggregated. A key requirement of practical PoW blockchains is to adapt to mining power variations over time (Bitcoin's total mining power has increased by a 1014 factor over the decade). In this paper, we consider the design of provably secure parallel-chain protocols which can adapt to such mining power variations. The Bitcoin difficulty adjustment rule adjusts the difficulty target of block mining periodically to get a constant mean inter-block time. While superficially simple, the rule has proved itself to be sophisticated and successfully secure, both in practice and in theory. We show that natural adaptations of the Bitcoin adjustment rule to the parallel-chain case open the door to subtle, but catastrophic safety and liveness breaches. We uncover a meta-design principle that allow us to design variable mining difficulty protocols for three popular PoW blockchain proposals (Prism, OHIE, Fruitchains) inside a common rubric. The principle has three components: (M1) a pivot chain, based on which blocks in all chains choose difficulty, (M2) a monotonicity condition for referencing pivot chain blocks and (M3) translating additional protocol aspects from using levels (depth) to using "difficulty levels". We show that protocols employing a subset of these principles may have catastrophic failures. The security of the designs is also proved using a common rubric - the key technical challenge involves analyzing the interaction between the pivot chain and the other chains, as well as bounding the sudden changes in difficulty target experienced in non-pivot chains. We empirically investigate the responsivity of the new mining difficulty rule via simulations based on historical Bitcoin data, and find that the protocol very effectively controls the forking rate across all the chains.

Original languageEnglish (US)
Title of host publicationCCS 2021 - Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security
PublisherAssociation for Computing Machinery
Pages1700-1721
Number of pages22
ISBN (Electronic)9781450384544
DOIs
StatePublished - Nov 12 2021
Externally publishedYes
Event27th ACM Annual Conference on Computer and Communication Security, CCS 2021 - Virtual, Online, Korea, Republic of
Duration: Nov 15 2021Nov 19 2021

Publication series

NameProceedings of the ACM Conference on Computer and Communications Security
ISSN (Print)1543-7221

Conference

Conference27th ACM Annual Conference on Computer and Communication Security, CCS 2021
Country/TerritoryKorea, Republic of
CityVirtual, Online
Period11/15/2111/19/21

All Science Journal Classification (ASJC) codes

  • Software
  • Computer Networks and Communications

Keywords

  • parallel-chain
  • proof-of-work
  • security analysis

Fingerprint

Dive into the research topics of 'Securing Parallel-chain Protocols under Variable Mining Power'. Together they form a unique fingerprint.

Cite this