TY - GEN
T1 - Securing Downlink Non-Orthogonal Multiple Access Systems by Trusted Relays
AU - Arafa, Ahmed
AU - Shin, Wonjae
AU - Vaezi, Mojtaba
AU - Poor, H. Vincent
N1 - Publisher Copyright:
© 2018 IEEE.
PY - 2018
Y1 - 2018
N2 - A downlink single-input single-output nonorthogonal multiple access system is considered in which a base station (BS) is communicating with two legitimate users in the presence of an external eavesdropper. A group of trusted cooperative half-duplex relay nodes, powered by the BS, is employed to assist the BS's transmission. The goal is to design relaying schemes such that the legitimate users' secrecy rate region is maximized subject to a total power constraint on the BS and the relays' transmissions. Three relaying schemes are investigated: cooperative jamming, decode-and-forward, and amplify-and-forward. Depending on the scheme, secure beamforming signals are carefully designed for the relay nodes that either diminish the eavesdropper's rate without affecting that of the legitimate users, or increase the legitimate users' rates without increasing that of the eavesdropper. The results show that there is no relaying scheme that fits all conditions; the best relaying scheme depends on the system parameters, namely, the relays' and eavesdropper's distances from the BS, and the number of relays. They also show that the relatively simple cooperative jamming scheme outperforms other schemes when the relays are far from the BS and/or close to the eavesdropper.
AB - A downlink single-input single-output nonorthogonal multiple access system is considered in which a base station (BS) is communicating with two legitimate users in the presence of an external eavesdropper. A group of trusted cooperative half-duplex relay nodes, powered by the BS, is employed to assist the BS's transmission. The goal is to design relaying schemes such that the legitimate users' secrecy rate region is maximized subject to a total power constraint on the BS and the relays' transmissions. Three relaying schemes are investigated: cooperative jamming, decode-and-forward, and amplify-and-forward. Depending on the scheme, secure beamforming signals are carefully designed for the relay nodes that either diminish the eavesdropper's rate without affecting that of the legitimate users, or increase the legitimate users' rates without increasing that of the eavesdropper. The results show that there is no relaying scheme that fits all conditions; the best relaying scheme depends on the system parameters, namely, the relays' and eavesdropper's distances from the BS, and the number of relays. They also show that the relatively simple cooperative jamming scheme outperforms other schemes when the relays are far from the BS and/or close to the eavesdropper.
UR - http://www.scopus.com/inward/record.url?scp=85063461445&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85063461445&partnerID=8YFLogxK
U2 - 10.1109/GLOCOM.2018.8648037
DO - 10.1109/GLOCOM.2018.8648037
M3 - Conference contribution
AN - SCOPUS:85063461445
T3 - 2018 IEEE Global Communications Conference, GLOBECOM 2018 - Proceedings
BT - 2018 IEEE Global Communications Conference, GLOBECOM 2018 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2018 IEEE Global Communications Conference, GLOBECOM 2018
Y2 - 9 December 2018 through 13 December 2018
ER -