Abstract
We study the problem of interactive function computation by multiple parties, each possessing a bit, in a differential privacy setting (i.e., there remains an uncertainty in any party's bit even when given the transcript of interactions and all the other parties' bits). Each party wants to compute a function, which could differ from party to party, and there could be a central observer interested in computing a separate function. Performance at each party is measured via the accuracy of the function to be computed. We allow for an arbitrary cost metric to measure the distortion between the true and the computed function values. Our main result is the optimality of a simple non-interactive protocol: each party randomizes its bit (sufficiently) and shares the privatized version with the other parties. This optimality result is very general: it holds for all types of functions, heterogeneous privacy conditions on the parties, all types of cost metrics, and both average and worst-case (over the inputs) measures of accuracy.
Original language | English (US) |
---|---|
Pages (from-to) | 2008-2016 |
Number of pages | 9 |
Journal | Advances in Neural Information Processing Systems |
Volume | 2015-January |
State | Published - 2015 |
Externally published | Yes |
Event | 29th Annual Conference on Neural Information Processing Systems, NIPS 2015 - Montreal, Canada Duration: Dec 7 2015 → Dec 12 2015 |
All Science Journal Classification (ASJC) codes
- Computer Networks and Communications
- Information Systems
- Signal Processing