Secure communication in massive MIMO relay networks

Gayan Amarasuriya, Rafael F. Schaefer, H. Vincent Poor

Research output: Chapter in Book/Report/Conference proceedingConference contribution

15 Scopus citations

Abstract

In this paper, a secure communication system model for massive multiple-input multiple-output (MIMO) relay networks is investigated. Specifically, physical layer secure transmission is provisioned in multi-user relay networks by employing massive MIMO, linear precoder/detectors and artificial noise generation in the presence of a passive multi-antenna eavesdropper. In particular, the achievable asymptotic secrecy rate for infinitely many relay antennas is derived. The use of random artificial noise shaping matrices is advocated for massive MIMO relays for the sake of reducing the system implementation complexity. The effects of the numbers of antennas at the relay and the eavesdropper in achieving secure communication are investigated by comparing the corresponding achievable secrecy rates.

Original languageEnglish (US)
Title of host publicationSPAWC 2016 - 17th IEEE International Workshop on Signal Processing Advances in Wireless Communications
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781509017492
DOIs
StatePublished - Aug 9 2016
Event17th IEEE International Workshop on Signal Processing Advances in Wireless Communications, SPAWC 2016 - Edinburgh, United Kingdom
Duration: Jul 3 2016Jul 6 2016

Publication series

NameIEEE Workshop on Signal Processing Advances in Wireless Communications, SPAWC
Volume2016-August

Other

Other17th IEEE International Workshop on Signal Processing Advances in Wireless Communications, SPAWC 2016
Country/TerritoryUnited Kingdom
CityEdinburgh
Period7/3/167/6/16

All Science Journal Classification (ASJC) codes

  • Electrical and Electronic Engineering
  • Computer Science Applications
  • Information Systems

Fingerprint

Dive into the research topics of 'Secure communication in massive MIMO relay networks'. Together they form a unique fingerprint.

Cite this