Secrecy degrees of freedom of the two-user MISO broadcast channel with mixed CSIT

Zhao Wang, Ming Xiao, Mikael Skoglund, H. Vincent Poor

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

The secrecy degrees of freedom (SDOF) of the multiple-input single-output (MISO) broadcast channel with confidential messages (BCC) is studied. The network consists of a two-antenna transmitter and two single-antenna receivers, each demanding a confidential message from the transmitter. The problem is investigated with mixed channel state information at transmitter (CSIT), which is a combination of perfect delayed CSIT and inaccurate current CSIT. When the variance of the estimation error for the current CSIT scales with O(P), with α ∈ [0, 1], it is shown that the optimal sum SDOF of the considered BCC is 1+α. Furthermore, the optimal SDOF region of the considered MISO BCC is shown to be a polygon scaling with α. The proposed scheme is based on an artificial noise alignment that can combine the benefits of both types of delayed and current CSIT. These results can be seen as an extension of results of Yang et al. and Gou-Jafar to multiuser networks with secrecy constraints.

Original languageEnglish (US)
Title of host publication2015 IEEE Information Theory Workshop, ITW 2015
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781479955268
DOIs
StatePublished - Jun 24 2015
Event2015 IEEE Information Theory Workshop, ITW 2015 - Jerusalem, Israel
Duration: Apr 26 2015May 1 2015

Publication series

Name2015 IEEE Information Theory Workshop, ITW 2015

Other

Other2015 IEEE Information Theory Workshop, ITW 2015
CountryIsrael
CityJerusalem
Period4/26/155/1/15

All Science Journal Classification (ASJC) codes

  • Electrical and Electronic Engineering
  • Computer Networks and Communications
  • Information Systems
  • Computational Theory and Mathematics

Fingerprint Dive into the research topics of 'Secrecy degrees of freedom of the two-user MISO broadcast channel with mixed CSIT'. Together they form a unique fingerprint.

Cite this