Secrecy by Design with Applications to Privacy and Compression

Yanina Y. Shkel, Rick S. Blum, H. Vincent Poor

Research output: Contribution to journalArticlepeer-review

Abstract

Secrecy by design is examined as an approach to information-theoretic secrecy. The main idea behind this approach is to design an information processing system from the ground up to be perfectly secure with respect to an explicit secrecy constraint. The principle technical contributions are decomposition bounds that allow to represent a random variable X as a deterministic function of (S;Z), where S is a given fixed random variable and Z is constructed to be independent of S. Using the problems of privacy and lossless compression as examples, the utility cost of applying secrecy by design is investigated. Privacy is studied in the setting of the privacy funnel function previously introduced in literature and new bounds for the regime of zero information leakage are derived. For the problem of lossless compression, it is shown that strong information-theoretic guarantees can be achieved using a reduced secret key size and a quantifiable penalty on the compression rate. The fundamental limits for both problems are characterised with matching lower and upper bounds when the secret S is a deterministic function of the information source X.

Original languageEnglish (US)
JournalIEEE Transactions on Information Theory
DOIs
StateAccepted/In press - 2020

All Science Journal Classification (ASJC) codes

  • Information Systems
  • Computer Science Applications
  • Library and Information Sciences

Keywords

  • Entropy
  • Information processing
  • Privacy
  • Random variables
  • Rate-distortion
  • Receivers
  • Transmitters

Fingerprint Dive into the research topics of 'Secrecy by Design with Applications to Privacy and Compression'. Together they form a unique fingerprint.

Cite this