TY - JOUR
T1 - Search for heavy neutrinos and third-generation leptoquarks in hadronic states of two τ leptons and two jets in proton-proton collisions at √s=13 TeV
AU - The CMS collaboration
AU - Sirunyan, A. M.
AU - Tumasyan, A.
AU - Adam, W.
AU - Ambrogi, F.
AU - Asilar, E.
AU - Bergauer, T.
AU - Brandstetter, J.
AU - Dragicevic, M.
AU - Erö, J.
AU - Escalante Del Valle, A.
AU - Flechl, M.
AU - Frühwirth, R.
AU - Ghete, V. M.
AU - Hrubec, J.
AU - Jeitler, M.
AU - Krammer, N.
AU - Krätschmer, I.
AU - Liko, D.
AU - Madlener, T.
AU - Mikulec, I.
AU - Rad, N.
AU - Rohringer, H.
AU - Schieck, J.
AU - Schöfbeck, R.
AU - Spanring, M.
AU - Spitzbart, D.
AU - Taurok, A.
AU - Waltenberger, W.
AU - Wittmann, J.
AU - Wulz, C. E.
AU - Zarucki, M.
AU - Chekhovsky, V.
AU - Mossolov, V.
AU - Suarez Gonzalez, J.
AU - De Wolf, E. A.
AU - Di Croce, D.
AU - Janssen, X.
AU - Lauwers, J.
AU - Pieters, M.
AU - Van Haevermaet, H.
AU - Van Mechelen, P.
AU - Van Remortel, N.
AU - Abu Zeid, S.
AU - Blekman, F.
AU - D’Hondt, J.
AU - De Clercq, J.
AU - Marlow, Daniel Robert
AU - Ojalvo, Isobel Rose
AU - Olsen, James D.
AU - Tully, Christopher George
N1 - Funding Information:
Open Access, Copyright CERN, for the benefit of the CMS Collaboration. Article funded by SCOAP3.
Funding Information:
We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COL-CIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI, and FEDER (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (U.S.A.).
Funding Information:
Individuals have received support from the Marie-Curie programme and the European Research Council and Horizon 2020 Grant, contract No. 675440 (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the “Excellence of Science — EOS” — be.h project n. 30820817; the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Lendület (“Momentum”) Programme and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences, the New National Excellence Program ÚNKP, the NKFIA research grants 123842, 123959, 124845, 124850 and 125105 (Hungary); the Council of Science and Industrial Research, India; the HOMING PLUS programme of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus programme of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the National Priorities Research Program by Qatar National Research Fund; the Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia María de Maeztu, grant MDM-2015-0509 and the Programa Severo Ochoa del Principado de Asturias; the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for
Publisher Copyright:
© 2019, The Author(s).
PY - 2019/3/1
Y1 - 2019/3/1
N2 - A search for new particles has been conducted using events with two high transverse momentum τ leptons that decay hadronically and at least two energetic jets. The analysis is performed using data from proton-proton collisions at s=13 TeV, collected by the CMS experiment at the LHC in 2016 and corresponding to an integrated luminosity of 35.9 fb −1 . The observed data are consistent with standard model expectations. The results are interpreted in the context of two physics models. The first model involves right-handed charged bosons, W R , that decay to heavy right-handed Majorana neutrinos, N ℓ (ℓ = e, μ, τ), arising in a left-right symmetric extension of the standard model. The model considers that N e and N μ are too heavy to be detected at the LHC. Assuming that the N τ mass is half of the W R mass, masses of the W R boson below 3.50 TeV are excluded at 95% confidence level. Exclusion limits are also presented considering different scenarios for the mass ratio between N τ and W R , as a function of W R mass. In the second model, pair production of third-generation scalar leptoquarks that decay into ττbb is considered, resulting in an observed exclusion region with leptoquark masses below 1.02 TeV, assuming a 100% branching fraction for the leptoquark decay to a τ lepton and a bottom quark. These results represent the most stringent limits to date on these models.[Figure not available: see fulltext.].
AB - A search for new particles has been conducted using events with two high transverse momentum τ leptons that decay hadronically and at least two energetic jets. The analysis is performed using data from proton-proton collisions at s=13 TeV, collected by the CMS experiment at the LHC in 2016 and corresponding to an integrated luminosity of 35.9 fb −1 . The observed data are consistent with standard model expectations. The results are interpreted in the context of two physics models. The first model involves right-handed charged bosons, W R , that decay to heavy right-handed Majorana neutrinos, N ℓ (ℓ = e, μ, τ), arising in a left-right symmetric extension of the standard model. The model considers that N e and N μ are too heavy to be detected at the LHC. Assuming that the N τ mass is half of the W R mass, masses of the W R boson below 3.50 TeV are excluded at 95% confidence level. Exclusion limits are also presented considering different scenarios for the mass ratio between N τ and W R , as a function of W R mass. In the second model, pair production of third-generation scalar leptoquarks that decay into ττbb is considered, resulting in an observed exclusion region with leptoquark masses below 1.02 TeV, assuming a 100% branching fraction for the leptoquark decay to a τ lepton and a bottom quark. These results represent the most stringent limits to date on these models.[Figure not available: see fulltext.].
KW - Beyond Standard Model
KW - Dark matter
KW - Hadron-Hadron scattering (experiments)
UR - http://www.scopus.com/inward/record.url?scp=85063902132&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85063902132&partnerID=8YFLogxK
U2 - 10.1007/JHEP03(2019)170
DO - 10.1007/JHEP03(2019)170
M3 - Article
AN - SCOPUS:85063902132
SN - 1126-6708
VL - 2019
JO - Journal of High Energy Physics
JF - Journal of High Energy Physics
IS - 3
M1 - 170
ER -