SEA-RAFT: Simple, Efficient, Accurate RAFT for Optical Flow

Yihan Wang, Lahav Lipson, Jia Deng

Research output: Chapter in Book/Report/Conference proceedingConference contribution

6 Scopus citations

Abstract

We introduce SEA-RAFT, a more simple, efficient, and accurate RAFT for optical flow. Compared with RAFT, SEA-RAFT is trained with a new loss (mixture of Laplace). It directly regresses an initial flow for faster convergence in iterative refinements and introduces rigid-motion pre-training to improve generalization. SEA-RAFT achieves state-of-the-art accuracy on the Spring benchmark with a 3.69 endpoint-error (EPE) and a 0.36 1-pixel outlier rate (1px), representing 22.9% and 17.8% error reduction from best published results. In addition, SEA-RAFT obtains the best cross-dataset generalization on KITTI and Spring. With its high efficiency, SEA-RAFT operates at least 2.3× faster than existing methods while maintaining competitive performance. The code is publicly available at https://github.com/princeton-vl/SEA-RAFT.

Original languageEnglish (US)
Title of host publicationComputer Vision – ECCV 2024 - 18th European Conference, Proceedings
EditorsAleš Leonardis, Elisa Ricci, Stefan Roth, Olga Russakovsky, Torsten Sattler, Gül Varol
PublisherSpringer Science and Business Media Deutschland GmbH
Pages36-54
Number of pages19
ISBN (Print)9783031726668
DOIs
StatePublished - 2025
Event18th European Conference on Computer Vision, ECCV 2024 - Milan, Italy
Duration: Sep 29 2024Oct 4 2024

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume15065 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference18th European Conference on Computer Vision, ECCV 2024
Country/TerritoryItaly
CityMilan
Period9/29/2410/4/24

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'SEA-RAFT: Simple, Efficient, Accurate RAFT for Optical Flow'. Together they form a unique fingerprint.

Cite this