TY - GEN
T1 - Scientific application performance on candidate PetaScale platforms
AU - Oliker, Leonid
AU - Canning, Andrew
AU - Carter, Jonathan
AU - Iancu, Costin
AU - Lijewski, Michael
AU - Kamil, Shoaib
AU - Shalf, John
AU - Shan, Hongzhang
AU - Strohmaier, Erich
AU - Ethier, Stéphane
AU - Goodale, Tom
PY - 2007
Y1 - 2007
N2 - After a decade where HEC (high-end computing) capability was dominated by the rapid pace of improvements to CPU clock frequency, the performance of next-generation supercomputers is increasingly differentiated by varying interconnect designs and levels of integration. Understanding the tradeoffs of these system designs, in the context of high-end numerical simulations, is a key step towards making effective petascale computing a reality. This work represents one of the most comprehensive performance evaluation studies to date on modern HEC systems, including the IBM Power5, AMD Opteron, IBM BG/L, and Cray X1E. A novel aspect of our study is the emphasis on full applications, with real input data at the scale desired by computational scientists in their unique domain. We examine six candidate ultra-scale applications, representing a broad range of algorithms and computational structures. Our work includes the highest concurrency experiments to date on five of our six applications, including 32K processor scalability for two of our codes and describe several successful optimizations strategies on BG/L, as well as improved X1E vectorization. Overall results indicate that our evaluated codes have the potential to effectively utilize petascale resources; however, several applications will require reengineering to incorporate the additional levels of parallelism necessary to achieve the vast concurrency of upcoming ultra-scale systems.
AB - After a decade where HEC (high-end computing) capability was dominated by the rapid pace of improvements to CPU clock frequency, the performance of next-generation supercomputers is increasingly differentiated by varying interconnect designs and levels of integration. Understanding the tradeoffs of these system designs, in the context of high-end numerical simulations, is a key step towards making effective petascale computing a reality. This work represents one of the most comprehensive performance evaluation studies to date on modern HEC systems, including the IBM Power5, AMD Opteron, IBM BG/L, and Cray X1E. A novel aspect of our study is the emphasis on full applications, with real input data at the scale desired by computational scientists in their unique domain. We examine six candidate ultra-scale applications, representing a broad range of algorithms and computational structures. Our work includes the highest concurrency experiments to date on five of our six applications, including 32K processor scalability for two of our codes and describe several successful optimizations strategies on BG/L, as well as improved X1E vectorization. Overall results indicate that our evaluated codes have the potential to effectively utilize petascale resources; however, several applications will require reengineering to incorporate the additional levels of parallelism necessary to achieve the vast concurrency of upcoming ultra-scale systems.
UR - https://www.scopus.com/pages/publications/34548793418
UR - https://www.scopus.com/inward/citedby.url?scp=34548793418&partnerID=8YFLogxK
U2 - 10.1109/IPDPS.2007.370259
DO - 10.1109/IPDPS.2007.370259
M3 - Conference contribution
AN - SCOPUS:34548793418
SN - 1424409101
SN - 9781424409105
T3 - Proceedings - 21st International Parallel and Distributed Processing Symposium, IPDPS 2007; Abstracts and CD-ROM
BT - Proceedings - 21st International Parallel and Distributed Processing Symposium, IPDPS 2007; Abstracts and CD-ROM
T2 - 21st International Parallel and Distributed Processing Symposium, IPDPS 2007
Y2 - 26 March 2007 through 30 March 2007
ER -