Schottky barrier heights of Pt silicides on SiGe

J. R. Jimenez, X. Xiao, James Christopher Sturm, P. W. Pellegrini, M. Chi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Silicide/SiGe Schottky barriers are of importance for applications in infrared detectors and SiGe contacts, as well as for fundamental studies of metal-semiconductor interfaces. We have fabricated silicide/SiGe Schottky diodes by the reaction of evaporated Pt and Ir films on p-SiGe alloys with a thin Si capping layer. The onset of metal-SiGe reactions was controlled by the deposited metal thickness. The Schottky barrier heights were determined from internal photoemission. Pt-SiGe and Ir-SiGe reacted diodes have barrier heights that are higher than the corresponding silicide/p-Si diodes. PtSi/Si/SiGe diodes, on the other hand, have lower 'barrier heights' that decrease with increasing Ge concentration. The smaller barrier heights in such silicide/Si/SiGe diodes are due to tunneling through the unconsumed Si layer. Equations are derived accounting for this tunneling contribution, and lead to an extracted 'barrier height' that is the Si barrier height reduced by the Si/SiGe band offset. Highly bias-tunable barrier heights are obtained (e.g. 0.30 eV to 0.12 eV) by allowing the SiGe/Si band offset to extend higher in energy than the Schottky barrier, leading to a cut-off-wavelength-tunable silicide/SiGe/Si Schottky diode infrared detector.

Original languageEnglish (US)
Title of host publicationSilicides, Germanides, and Their Interfaces
EditorsRobert W. Fathauer, Siegfried Mantl, Leo J. Schowalter, K.N. Tu
PublisherPubl by Materials Research Society
Pages293-298
Number of pages6
Volume320
ISBN (Print)1558992197
StatePublished - Jan 1 1994
Externally publishedYes
EventProceedings of the 1993 Fall Meeting of the Materials Research Society - Boston, MA, USA
Duration: Nov 29 1993Dec 2 1993

Other

OtherProceedings of the 1993 Fall Meeting of the Materials Research Society
CityBoston, MA, USA
Period11/29/9312/2/93

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials

Fingerprint

Dive into the research topics of 'Schottky barrier heights of Pt silicides on SiGe'. Together they form a unique fingerprint.

Cite this