Abstract
We report on a systematic study of the density dependence of mobility in a low-density carbon-doped (100) GaAs two-dimensional hole system (2DHS). At T=50 mK, a mobility of 2.6 × 106 cm2/Vs at a density p=6.2×1010 cm -2 was measured. This is the highest mobility reported for a 2DHS to date. Using a backgated sample geometry, the density dependence of mobility was studied from 2.8 × 1010 cm-2 to 1 × 1011 cm-2. The mobility vs density cannot be fit to a power law dependence of the form μ~pα using a single exponent α. Our data indicate a continuous evolution of the power law with α ranging from ~0.7 at high density and increasing to ~1.7 at the lowest densities measured. Calculations specific to our structure indicate a crossover of the dominant scattering mechanism from uniform background impurity scattering at high density to remote ionized impurity scattering at low densities. This is the first observation of a carrier density-induced transition from background impurity dominated to remote dopant dominated transport in a single sample.
Original language | English (US) |
---|---|
Article number | 241305 |
Journal | Physical Review B - Condensed Matter and Materials Physics |
Volume | 83 |
Issue number | 24 |
DOIs | |
State | Published - Jun 20 2011 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics