Scaling of entanglement entropy at quantum critical points in random spin chains

Prashant Kumar, R. N. Bhatt

Research output: Contribution to journalArticlepeer-review


We study the scaling properties of entanglement entropy (EE) near the quantum critical points in interacting random antiferromagnetic (AFM) spin chains. Using density-matrix renormalization group, we compute the half-chain EE near the topological phase transition between the Haldane and random singlet phases in a disordered spin-1 chain. It is found to diverge logarithmically in system size with an effective central charge ceff=1.17(4) at the quantum critical point (QCP). Moreover, a scaling analysis of EE yields the correlation length exponent ν=2.28(5). Our unbiased calculation establishes that the QCP is in the universality class of the infinite-randomness fixed point predicted by previous studies based on the strong disorder renormalization group technique. However, in the disordered spin-1/2 Majumdar-Ghosh chain, where a valence bond solid phase is unstable to disorder, the crossover length exponent obtained from a scaling analysis of EE disagrees with the expectation based on the Imry-Ma argument. We provide a possible explanation.

Original languageEnglish (US)
Article numberL241113
JournalPhysical Review B
Issue number24
StatePublished - Dec 15 2023

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics


Dive into the research topics of 'Scaling of entanglement entropy at quantum critical points in random spin chains'. Together they form a unique fingerprint.

Cite this