TY - GEN
T1 - Scale-sensitive dimensions, uniform convergence, and learnability
AU - Alon, Noga
AU - Ben-David, Shai
AU - Cesa-Bianchi, Nicolo
AU - Haussler, David
PY - 1993
Y1 - 1993
N2 - Learnability in Valiant's PAC learning model has been shown to be strongly related to the existence of uniform laws of large numbers. These laws define a distribution-free convergence property of means to expectations uniformly over classes of random variables. Classes of real-valued functions enjoying such a property are also known as uniform Glivenko-Cantelli classes. In this paper we prove, through a generalization of Sauer's lemma that may be interesting in its own right, a new characterization of uniform Glivenko-Cantelli classes. Our characterization yields Dudley, Gine, and Zinn's previous characterization as a corollary. Furthermore, it is the first based on a simple combinatorial quantity generalizing the Vapnik-Chervonenkis dimension. We apply this result to characterize PAC learnability in the statistical regression framework of probabilistic concepts, solving an open problem posed by Kearns and Schapire. Our characterization shows that the accuracy parameter plays a crucial role in determining the effective complexity of the learner's hypothesis class.
AB - Learnability in Valiant's PAC learning model has been shown to be strongly related to the existence of uniform laws of large numbers. These laws define a distribution-free convergence property of means to expectations uniformly over classes of random variables. Classes of real-valued functions enjoying such a property are also known as uniform Glivenko-Cantelli classes. In this paper we prove, through a generalization of Sauer's lemma that may be interesting in its own right, a new characterization of uniform Glivenko-Cantelli classes. Our characterization yields Dudley, Gine, and Zinn's previous characterization as a corollary. Furthermore, it is the first based on a simple combinatorial quantity generalizing the Vapnik-Chervonenkis dimension. We apply this result to characterize PAC learnability in the statistical regression framework of probabilistic concepts, solving an open problem posed by Kearns and Schapire. Our characterization shows that the accuracy parameter plays a crucial role in determining the effective complexity of the learner's hypothesis class.
UR - http://www.scopus.com/inward/record.url?scp=0027802035&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0027802035&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:0027802035
SN - 0818643706
T3 - Annual Symposium on Foundatons of Computer Science (Proceedings)
SP - 292
EP - 301
BT - Annual Symposium on Foundatons of Computer Science (Proceedings)
A2 - Anon, null
PB - Publ by IEEE
T2 - Proceedings of the 34th Annual Symposium on Foundations of Computer Science
Y2 - 3 November 1993 through 5 November 1993
ER -