Safely probabilistically complete real-time planning and exploration in unknown environments

David Fridovich-Keil, Jaime F. Fisac, Claire J. Tomlin

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

We present a new framework for motion planning that wraps around existing kinodynamic planners and guarantees recursive feasibility when operating in a priori unknown, static environments. Our approach makes strong guarantees about overall safety and collision avoidance by utilizing a robust controller derived from reachability analysis. We ensure that motion plans never exit the safe backward reachable set of the initial state, while safely exploring the space. This preserves the safety of the initial state, and guarantees that that we will eventually find the goal if it is possible to do so while exploring safely. We implement our framework in the Robot Operating System (ROS) software environment and demonstrate it in a real-time simulation.

Original languageEnglish (US)
Title of host publication2019 International Conference on Robotics and Automation, ICRA 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages7470-7476
Number of pages7
ISBN (Electronic)9781538660263
DOIs
StatePublished - May 2019
Externally publishedYes
Event2019 International Conference on Robotics and Automation, ICRA 2019 - Montreal, Canada
Duration: May 20 2019May 24 2019

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
Volume2019-May
ISSN (Print)1050-4729

Conference

Conference2019 International Conference on Robotics and Automation, ICRA 2019
CountryCanada
CityMontreal
Period5/20/195/24/19

All Science Journal Classification (ASJC) codes

  • Software
  • Control and Systems Engineering
  • Artificial Intelligence
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Safely probabilistically complete real-time planning and exploration in unknown environments'. Together they form a unique fingerprint.

  • Cite this

    Fridovich-Keil, D., Fisac, J. F., & Tomlin, C. J. (2019). Safely probabilistically complete real-time planning and exploration in unknown environments. In 2019 International Conference on Robotics and Automation, ICRA 2019 (pp. 7470-7476). [8793905] (Proceedings - IEEE International Conference on Robotics and Automation; Vol. 2019-May). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/ICRA.2019.8793905