TY - GEN
T1 - Safe Reinforcement Learning with Natural Language Constraints
AU - Yang, Tsung Yen
AU - Hu, Michael
AU - Chow, Yinlam
AU - Ramadge, Peter J.
AU - Narasimhan, Karthik
N1 - Publisher Copyright:
© 2021 Neural information processing systems foundation. All rights reserved.
PY - 2021
Y1 - 2021
N2 - While safe reinforcement learning (RL) holds great promise for many practical applications like robotics or autonomous cars, current approaches require specifying constraints in mathematical form. Such specifications demand domain expertise, limiting the adoption of safe RL. In this paper, we propose learning to interpret natural language constraints for safe RL. To this end, we first introduce HAZARDWORLD, a new multi-task benchmark that requires an agent to optimize reward while not violating constraints specified in free-form text. We then develop an agent with a modular architecture that can interpret and adhere to such textual constraints while learning new tasks. Our model consists of (1) a constraint interpreter that encodes textual constraints into spatial and temporal representations of forbidden states, and (2) a policy network that uses these representations to produce a policy achieving minimal constraint violations during training. Across different domains in HAZARDWORLD, we show that our method achieves higher rewards (up to 11x) and fewer constraint violations (by 1.8x) compared to existing approaches. However, in terms of absolute performance, HAZARDWORLD still poses significant challenges for agents to learn efficiently, motivating the need for future work.
AB - While safe reinforcement learning (RL) holds great promise for many practical applications like robotics or autonomous cars, current approaches require specifying constraints in mathematical form. Such specifications demand domain expertise, limiting the adoption of safe RL. In this paper, we propose learning to interpret natural language constraints for safe RL. To this end, we first introduce HAZARDWORLD, a new multi-task benchmark that requires an agent to optimize reward while not violating constraints specified in free-form text. We then develop an agent with a modular architecture that can interpret and adhere to such textual constraints while learning new tasks. Our model consists of (1) a constraint interpreter that encodes textual constraints into spatial and temporal representations of forbidden states, and (2) a policy network that uses these representations to produce a policy achieving minimal constraint violations during training. Across different domains in HAZARDWORLD, we show that our method achieves higher rewards (up to 11x) and fewer constraint violations (by 1.8x) compared to existing approaches. However, in terms of absolute performance, HAZARDWORLD still poses significant challenges for agents to learn efficiently, motivating the need for future work.
UR - http://www.scopus.com/inward/record.url?scp=85132029152&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85132029152&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85132029152
T3 - Advances in Neural Information Processing Systems
SP - 13794
EP - 13808
BT - Advances in Neural Information Processing Systems 34 - 35th Conference on Neural Information Processing Systems, NeurIPS 2021
A2 - Ranzato, Marc'Aurelio
A2 - Beygelzimer, Alina
A2 - Dauphin, Yann
A2 - Liang, Percy S.
A2 - Wortman Vaughan, Jenn
PB - Neural information processing systems foundation
T2 - 35th Conference on Neural Information Processing Systems, NeurIPS 2021
Y2 - 6 December 2021 through 14 December 2021
ER -