Safe platooning of unmanned aerial vehicles via reachability

Mo Chen, Qie Hu, Casey Mackin, Jaime F. Fisac, Claire J. Tomlin

Research output: Chapter in Book/Report/Conference proceedingConference contribution

40 Scopus citations

Abstract

Recently, there has been immense interest in using unmanned aerial vehicles (UAVs) for civilian operations such as package delivery, firefighting, and fast disaster response. As a result, UAV traffic management systems are needed to support potentially thousands of UAVs flying simultaneously in the airspace, in order to ensure their liveness and safety requirements are met. Hamilton-Jacobi (HJ) reachability is a powerful framework for providing conditions under which these requirements can be met, and for synthesizing the optimal controller for meeting them. However, due to the curse of dimensionality, HJ reachability is only tractable for a small number of vehicles if their set of maneuvers is unrestricted. In this paper, we define a platoon to be a group of UAVs in a single-file formation. We model each vehicle as a hybrid system with modes corresponding to its role in the platoon, and specify the set of allowed maneuvers in each mode to make the analysis tractable. We propose several liveness controllers based on HJ reachability, and wrap a safety controller, also based on HJ reachability, around the liveness controllers. For a single altitude range, our approach guarantees safety for one safety breach; in the unlikely event of multiple safety breaches, safety can be guaranteed over multiple altitude ranges. We demonstrate the satisfaction of liveness and safety requirements through simulations of three common scenarios.

Original languageEnglish (US)
Title of host publication54rd IEEE Conference on Decision and Control,CDC 2015
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4695-4701
Number of pages7
ISBN (Electronic)9781479978861
DOIs
StatePublished - Feb 8 2015
Externally publishedYes
Event54th IEEE Conference on Decision and Control, CDC 2015 - Osaka, Japan
Duration: Dec 15 2015Dec 18 2015

Publication series

NameProceedings of the IEEE Conference on Decision and Control
Volume54rd IEEE Conference on Decision and Control,CDC 2015
ISSN (Print)0743-1546
ISSN (Electronic)2576-2370

Other

Other54th IEEE Conference on Decision and Control, CDC 2015
Country/TerritoryJapan
CityOsaka
Period12/15/1512/18/15

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering
  • Modeling and Simulation
  • Control and Optimization

Fingerprint

Dive into the research topics of 'Safe platooning of unmanned aerial vehicles via reachability'. Together they form a unique fingerprint.

Cite this