Rotation of a submerged finite cylinder moving down a soft incline

Baudouin Saintyves, Bhargav Rallabandi, Theo Jules, Jesse Ault, Thomas Salez, Clarissa Schönecker, Howard A. Stone, L. Mahadevan

Research output: Contribution to journalArticlepeer-review

10 Scopus citations


A submerged finite cylinder moving under its own weight along a soft incline lifts off and slides at a steady velocity while also spinning. Here, we experimentally quantify the steady spinning of the cylinder and show theoretically that it is due to a combination of an elastohydrodynamic torque generated by flow in the variable gap, and the viscous friction on the edges of the finite-length cylinder. The relative influence of the latter depends on the aspect ratio of the cylinder, the angle of the incline, and the deformability of the substrate, which we express in terms of a single scaled compliance parameter. By independently varying these quantities, we show that our experimental results are consistent with a transition from an edge-effect dominated regime for short cylinders to a gap-dominated elastohydrodynamic regime when the cylinder is very long.

Original languageEnglish (US)
Pages (from-to)4000-4007
Number of pages8
JournalSoft matter
Issue number16
StatePublished - Apr 28 2020
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • Condensed Matter Physics


Dive into the research topics of 'Rotation of a submerged finite cylinder moving down a soft incline'. Together they form a unique fingerprint.

Cite this