Abstract
Nonradiative recombination reduces the open-circuit voltage relative to its theoretical limit and leads to reduced luminescence emission at a given excitation. Therefore, it is possible to correlate changes in luminescence emission with changes in open-circuit voltage and in the charge carrier lifetime. Here we use luminescence studies combined with transient photovoltage and differential charging analyses to study the effect of polymer fractionation in indacenoedithiophene-co-benzothiadiazole (IDTBT):fullerene solar cells. In this system, polymer fractionation increases electroluminescence emission at the same injection current and reduces nonradiative recombination. High-molecular-weight and fractionated IDTBT polymers exhibit higher carrier lifetime-mobility product compared to that of their nonfractionated analogues, resulting in improved solar cell performance. (Graph Presented).
Original language | English (US) |
---|---|
Pages (from-to) | 19668-19673 |
Number of pages | 6 |
Journal | Journal of Physical Chemistry C |
Volume | 119 |
Issue number | 34 |
DOIs | |
State | Published - Aug 27 2015 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- General Energy
- Physical and Theoretical Chemistry
- Surfaces, Coatings and Films