Robust online motion planning via contraction theory and convex optimization

Sumeet Singh, Anirudha Majumdar, Jean Jacques Slotine, Marco Pavone

Research output: Chapter in Book/Report/Conference proceedingConference contribution

149 Scopus citations

Abstract

We present a framework for online generation of robust motion plans for robotic systems with nonlinear dynamics subject to bounded disturbances, control constraints, and online state constraints such as obstacles. In an offline phase, one computes the structure of a feedback controller that can be efficiently implemented online to track any feasible nominal trajectory. The offline phase leverages contraction theory and convex optimization to characterize a fixed-size 'tube' that the state is guaranteed to remain within while tracking a nominal trajectory (representing the center of the tube). In the online phase, when the robot is faced with obstacles, a motion planner uses such a tube as a robustness margin for collision checking, yielding nominal trajectories that can be safely executed, i.e., tracked without collisions under disturbances. In contrast to recent work on robust online planning using funnel libraries, our approach is not restricted to a fixed library of maneuvers computed offline and is thus particularly well-suited to applications such as UAV flight in densely cluttered environments where complex maneuvers may be required to reach a goal. We demonstrate our approach through simulations of a 6-state planar quadrotor navigating cluttered environments in the presence of a cross-wind. We also discuss applications of our approach to Tube Model Predictive Control (TMPC) and compare the merits of our method with state-of-the-art nonlinear TMPC techniques.

Original languageEnglish (US)
Title of host publicationICRA 2017 - IEEE International Conference on Robotics and Automation
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages5883-5890
Number of pages8
ISBN (Electronic)9781509046331
DOIs
StatePublished - Jul 21 2017
Externally publishedYes
Event2017 IEEE International Conference on Robotics and Automation, ICRA 2017 - Singapore, Singapore
Duration: May 29 2017Jun 3 2017

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Other

Other2017 IEEE International Conference on Robotics and Automation, ICRA 2017
Country/TerritorySingapore
CitySingapore
Period5/29/176/3/17

All Science Journal Classification (ASJC) codes

  • Software
  • Control and Systems Engineering
  • Electrical and Electronic Engineering
  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Robust online motion planning via contraction theory and convex optimization'. Together they form a unique fingerprint.

Cite this