Abstract
This paper considers probabilistic robust control of nonlinear uncertain systems. A combination of stochastic robustness and dynamic inversion is proposed for general system that have a feedback-linearizable nominal system. In this paper, the stochastic robust nonlinear control approach is applied to a highly nonlinear complex aircraft model, the high-incidenee research model (HIRM). The model addresses a high-angle-of-attack enhanced manual control problem. The aim of the flight control system is to give good handling qualities across the specified flight envelope without the use of gain scheduling and also to provide robustness to modeling uncertainties. The proposed stochastic robust nonlinear control explores the direct design of nonlinear flight control logic. Therefore, the final design aceounts for all significant nonlinearities in the aircraft's high-fidelity simulation model. The controller parameters are designed to minimize the probability of violating design specifications, which provides the design with good robustness in stability and performance subject to modeling uncertainties. The present design compares favorably with earlier controllers that were generated for a benchmark design competition.
Original language | English (US) |
---|---|
Pages (from-to) | 15-26 |
Number of pages | 12 |
Journal | IEEE Transactions on Control Systems Technology |
Volume | 13 |
Issue number | 1 |
DOIs | |
State | Published - Jan 2005 |
All Science Journal Classification (ASJC) codes
- Control and Systems Engineering
- Electrical and Electronic Engineering
Keywords
- Monte Carlo simulation
- Nonlinear control
- Randomized algorithms
- Stochastic robustness