TY - GEN
T1 - Robust estimation of transition matrices in high dimensional heavy-tailed vector autoregressive processes
AU - Qiu, Huitong
AU - Xu, Sheng
AU - Han, Fang
AU - Liu, Han
AU - Caffo, Brian
N1 - Publisher Copyright:
© Copyright 2015 by International Machine Learning Society (IMLS). All rights reserved.
PY - 2015
Y1 - 2015
N2 - Gaussian vector autoregressive (VAR) processes have been extensively studied in the literature. However, Gaussian assumptions are stringent for heavy-tailed time series that frequently arises in finance and economics. In this paper, we develop a unified framework for modeling and estimating heavy-tailed VAR processes. In particular, we generalize the Gaussian VAR model by an elliptical VAR model that naturally accommodates heavy-tailed time series. Under this model, we develop a quantile-based robust estimator for the transition matrix of the VAR process. We show that the proposed estimator achieves parametric rates of convergence in high dimensions. This is the first work in analyzing heavy-tailed high dimensional VAR processes. As an application of the proposed framework, we investigate Granger causality in the elliptical VAR process, and show that the robust transition matrix estimator induces sign-consistent estimators of Granger causality. The empirical performance of the proposed methodology is demonstrated by both synthetic and real data. We show that the proposed estimator is robust to heavy tails, and exhibit superior performance in stock price prediction.
AB - Gaussian vector autoregressive (VAR) processes have been extensively studied in the literature. However, Gaussian assumptions are stringent for heavy-tailed time series that frequently arises in finance and economics. In this paper, we develop a unified framework for modeling and estimating heavy-tailed VAR processes. In particular, we generalize the Gaussian VAR model by an elliptical VAR model that naturally accommodates heavy-tailed time series. Under this model, we develop a quantile-based robust estimator for the transition matrix of the VAR process. We show that the proposed estimator achieves parametric rates of convergence in high dimensions. This is the first work in analyzing heavy-tailed high dimensional VAR processes. As an application of the proposed framework, we investigate Granger causality in the elliptical VAR process, and show that the robust transition matrix estimator induces sign-consistent estimators of Granger causality. The empirical performance of the proposed methodology is demonstrated by both synthetic and real data. We show that the proposed estimator is robust to heavy tails, and exhibit superior performance in stock price prediction.
UR - http://www.scopus.com/inward/record.url?scp=84969963069&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84969963069&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84969963069
T3 - 32nd International Conference on Machine Learning, ICML 2015
SP - 1843
EP - 1851
BT - 32nd International Conference on Machine Learning, ICML 2015
A2 - Bach, Francis
A2 - Blei, David
PB - International Machine Learning Society (IMLS)
T2 - 32nd International Conference on Machine Learning, ICML 2015
Y2 - 6 July 2015 through 11 July 2015
ER -