Robust and interpretable grounding of spatial references with relation networks

Tsung Yen Yang, Andrew S. Lan, Karthik Narasimhan

Research output: Chapter in Book/Report/Conference proceedingConference contribution

6 Scopus citations

Abstract

Learning representations of spatial references in natural language is a key challenge in tasks like autonomous navigation and robotic manipulation. Recent work has investigated various neural architectures for learning multi-modal representations for spatial concepts. However, the lack of explicit reasoning over entities makes such approaches vulnerable to noise in input text or state observations. In this paper, we develop effective models for understanding spatial references in text that are robust and interpretable, without sacrificing performance. We design a text-conditioned relation network whose parameters are dynamically computed with a cross-modal attention module to capture fine-grained spatial relations between entities. This design choice provides interpretability of learned intermediate outputs. Experiments across three tasks demonstrate that our model achieves superior performance, with a 17% improvement in predicting goal locations and a 15% improvement in robustness compared to state-of-the-art systems.

Original languageEnglish (US)
Title of host publicationFindings of the Association for Computational Linguistics Findings of ACL
Subtitle of host publicationEMNLP 2020
PublisherAssociation for Computational Linguistics (ACL)
Pages1908-1923
Number of pages16
ISBN (Electronic)9781952148903
StatePublished - 2020
EventFindings of the Association for Computational Linguistics, ACL 2020: EMNLP 2020 - Virtual, Online
Duration: Nov 16 2020Nov 20 2020

Publication series

NameFindings of the Association for Computational Linguistics Findings of ACL: EMNLP 2020

Conference

ConferenceFindings of the Association for Computational Linguistics, ACL 2020: EMNLP 2020
CityVirtual, Online
Period11/16/2011/20/20

All Science Journal Classification (ASJC) codes

  • Information Systems
  • Computer Science Applications
  • Computational Theory and Mathematics

Fingerprint

Dive into the research topics of 'Robust and interpretable grounding of spatial references with relation networks'. Together they form a unique fingerprint.

Cite this