RNA Controls PolyQ Protein Phase Transitions

Huaiying Zhang, Shana Elbaum-Garfinkle, Erin M. Langdon, Nicole Taylor, Patricia Occhipinti, Andrew A. Bridges, Clifford P. Brangwynne, Amy S. Gladfelter

Research output: Contribution to journalArticlepeer-review

496 Scopus citations


Compartmentalization in cells is central to the spatial and temporal control of biochemistry. In addition to membrane-bound organelles, membrane-less compartments form partitions in cells. Increasing evidence suggests that these compartments assemble through liquid-liquid phase separation. However, the spatiotemporal control of their assembly, and how they maintain distinct functional and physical identities, is poorly understood. We have previously shown an RNA-binding protein with a polyQ-expansion called Whi3 is essential for the spatial patterning of cyclin and formin transcripts in cytosol. Here, we show that specific mRNAs that are known physiological targets of Whi3 drive phase separation. mRNA can alter the viscosity of droplets, their propensity to fuse, and the exchange rates of components with bulk solution. Different mRNAs impart distinct biophysical properties of droplets, indicating mRNA can bring individuality to assemblies. Our findings suggest that mRNAs can encode not only genetic information but also the biophysical properties of phase-separated compartments.

Original languageEnglish (US)
Pages (from-to)220-230
Number of pages11
JournalMolecular Cell
Issue number2
StatePublished - Oct 15 2015
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Molecular Biology
  • Cell Biology


Dive into the research topics of 'RNA Controls PolyQ Protein Phase Transitions'. Together they form a unique fingerprint.

Cite this