Ring current dynamics during the 13-18 July 2000 storm period

V. K. Jordanova, R. M. Thorne, C. J. Farrugia, Y. Dotan, J. F. Fennell, M. F. Thomsen, G. D. Reeves, D. J. Mccomas

Research output: Contribution to journalArticlepeer-review

28 Scopus citations


We study the development of the terrestrial ring current during the time interval of 13-18 July, 2000, which consisted of two small to moderate geomagnetic storms followed by a great storm with indices Dst = -300 nT and Kp = 9. This period of intense geomagnetic activity was caused by three interplanetary coronal mass ejecta (ICME) each driving interplanetary shocks, the last shock being very strong and reaching Earth at ∼ 14 UT on 15 July. We note that (a) the sheath region behind the third shock was characterized by Bz fluctuations of ∼35 nT peak-to-peak amplitude, and (b) the ICME contained a negative to positive Bz variation extending for about 1 day, with a ∼ 6-hour long negative phase and a minimum Bz of about -55 nT. Both of these interplanetary sources caused considerable geomagnetic activity (Kp = 8 to 9) despite their disparity as interplanetary triggers. We used our global ring current-atmosphere interaction model with initial and boundary conditions inferred from measurements from the hot plasma instruments on the Polar spacecraft and the geosynchronous Los Alamos satellites, and simulated the time evolution of H+, O+, and He+ ring current ion distributions. We found that the O+ content of the ring current increased after each shock and reached maximum values of ∼ 60% near minimum Dst of the great storm. We calculated the growth rate of electromagnetic ion cyclotron waves considering for the first time wave excitation at frequencies below O+ gyrofrequency. We found that the wave gain of O+ band waves is greater and is located at larger L shells than that of the He+ band waves during this storm interval. Isotropic pitch angle distributions indicating strong plasma wave scattering were observed by the imaging proton sensor (IPS) on Polar at the locations of maximum predicted wave gain, in good agreement with model simulations.

Original languageEnglish (US)
Pages (from-to)361-375
Number of pages15
JournalSolar Physics
Issue number1-2
StatePublished - 2001
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science


Dive into the research topics of 'Ring current dynamics during the 13-18 July 2000 storm period'. Together they form a unique fingerprint.

Cite this