Rideshare Transparency: Translating Gig Worker Insights on AI Platform Design to Policy

Varun Nagaraj Rao, Samantha Dalal, Eesha Agarwal, Dana Calacci, Andrés Monroy-Hernández

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Rideshare platforms exert significant control over workers through algorithmic systems that can result in financial, emotional, and physical harm. What steps can platforms, designers, and practitioners take to mitigate these negative impacts and meet worker needs? In this paper, we identify transparency-related harms, mitigation strategies, and worker needs while validating and contextualizing our findings within the broader worker community. We use a novel mixed-methods study combining an LLM-based analysis of over 1 million comments posted to online platform worker communities with semi-structured interviews with workers. Our findings expose a transparency gap between existing platform designs and the information drivers need, particularly concerning promotions, fares, routes, and task allocation. Our analysis suggests that rideshare workers need key pieces of information, which we refer to as indicators, to make informed work decisions. These indicators include details about rides, driver statistics, algorithmic implementation details, and platform policy information. We argue that instead of relying on platforms to include such information in their designs, new regulations requiring platforms to publish public transparency reports may be a more effective solution to improve worker well-being. We offer recommendations for implementing such a policy.

Original languageEnglish (US)
Article numberCSCW161
JournalProceedings of the ACM on Human-Computer Interaction
Volume9
Issue number2
DOIs
StatePublished - May 2 2025
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Social Sciences (miscellaneous)
  • Human-Computer Interaction
  • Computer Networks and Communications

Keywords

  • AI Transparency
  • LLMs
  • Labor
  • Policy
  • Reddit
  • Rideshare Platforms

Fingerprint

Dive into the research topics of 'Rideshare Transparency: Translating Gig Worker Insights on AI Platform Design to Policy'. Together they form a unique fingerprint.

Cite this