TY - JOUR
T1 - Ricci flow on Kähler manifolds
AU - Chen, Xiuxiong
AU - Tian, Gang
N1 - Copyright:
Copyright 2017 Elsevier B.V., All rights reserved.
PY - 2001/2/1
Y1 - 2001/2/1
N2 - In this Note, we announce the result that if M is a Kähler-Einstein manifold with positive scalar curvature, if the initial metric has nonnegative bisectional curvature, and the curvature is positive somewhere, then the Kähler-Ricci flow converges to a Kähler-Einstein metric with constant bisectional curvature.
AB - In this Note, we announce the result that if M is a Kähler-Einstein manifold with positive scalar curvature, if the initial metric has nonnegative bisectional curvature, and the curvature is positive somewhere, then the Kähler-Ricci flow converges to a Kähler-Einstein metric with constant bisectional curvature.
UR - http://www.scopus.com/inward/record.url?scp=18044392363&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=18044392363&partnerID=8YFLogxK
U2 - 10.1016/S0764-4442(00)01719-5
DO - 10.1016/S0764-4442(00)01719-5
M3 - Article
AN - SCOPUS:18044392363
SN - 0764-4442
VL - 332
SP - 245
EP - 248
JO - Comptes Rendus de l'Academie des Sciences - Series I: Mathematics
JF - Comptes Rendus de l'Academie des Sciences - Series I: Mathematics
IS - 3
ER -