TY - JOUR
T1 - Riboneogenesis in yeast
AU - Clasquin, Michelle F.
AU - Melamud, Eugene
AU - Singer, Alexander
AU - Gooding, Jessica R.
AU - Xu, Xiaohui
AU - Dong, Aiping
AU - Cui, Hong
AU - Campagna, Shawn R.
AU - Savchenko, Alexei
AU - Yakunin, Alexander F.
AU - Rabinowitz, Joshua D.
AU - Caudy, Amy A.
N1 - Funding Information:
This research was supported by NSF Career Award MCB-0643859 to J.D.R. and NIH Grant GM071508 for the Center of Quantitative Biology at Princeton University. M.F.C. gratefully acknowledges financial support from Merck and Company through a Doctoral Research Fellowship and A.A.C. support through the Lewis-Sigler Fellows program. Additional support came from the Beckman Foundation, American Heart Association Grant 0635188N, NSF Career Award MCB-0643859, NIH Grant AI078063, the DOE Biohydrogen program (to J.D.R.), and the government of Canada through Genome Canada and the Ontario Genomics Institute (2009-OGI-ABC-1405) (to A.F.Y.). We thank Kate Kuznetsova for providing purified proteins, Wenyun Lu and Saw Kyin for assistance with mass spectrometry, and Dannie Durand and David Botstein for helpful discussions.
PY - 2011/6/10
Y1 - 2011/6/10
N2 - Glucose is catabolized in yeast via two fundamental routes, glycolysis and the oxidative pentose phosphate pathway, which produces NADPH and the essential nucleotide component ribose-5-phosphate. Here, we describe riboneogenesis, a thermodynamically driven pathway that converts glycolytic intermediates into ribose-5-phosphate without production of NADPH. Riboneogenesis begins with synthesis, by the combined action of transketolase and aldolase, of the seven-carbon bisphosphorylated sugar sedoheptulose-1,7-bisphosphate. In the pathway's committed step, sedoheptulose bisphosphate is hydrolyzed to sedoheptulose-7-phosphate by the enzyme sedoheptulose-1,7-bisphosphatase (SHB17), whose activity we identified based on metabolomic analysis of the corresponding knockout strain. The crystal structure of Shb17 in complex with sedoheptulose-1,7-bisphosphate reveals that the substrate binds in the closed furan form in the active site. Sedoheptulose-7-phosphate is ultimately converted by known enzymes of the nonoxidative pentose phosphate pathway to ribose-5-phosphate. Flux through SHB17 increases when ribose demand is high relative to demand for NADPH, including during ribosome biogenesis in metabolically synchronized yeast cells.
AB - Glucose is catabolized in yeast via two fundamental routes, glycolysis and the oxidative pentose phosphate pathway, which produces NADPH and the essential nucleotide component ribose-5-phosphate. Here, we describe riboneogenesis, a thermodynamically driven pathway that converts glycolytic intermediates into ribose-5-phosphate without production of NADPH. Riboneogenesis begins with synthesis, by the combined action of transketolase and aldolase, of the seven-carbon bisphosphorylated sugar sedoheptulose-1,7-bisphosphate. In the pathway's committed step, sedoheptulose bisphosphate is hydrolyzed to sedoheptulose-7-phosphate by the enzyme sedoheptulose-1,7-bisphosphatase (SHB17), whose activity we identified based on metabolomic analysis of the corresponding knockout strain. The crystal structure of Shb17 in complex with sedoheptulose-1,7-bisphosphate reveals that the substrate binds in the closed furan form in the active site. Sedoheptulose-7-phosphate is ultimately converted by known enzymes of the nonoxidative pentose phosphate pathway to ribose-5-phosphate. Flux through SHB17 increases when ribose demand is high relative to demand for NADPH, including during ribosome biogenesis in metabolically synchronized yeast cells.
UR - http://www.scopus.com/inward/record.url?scp=79958281553&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79958281553&partnerID=8YFLogxK
U2 - 10.1016/j.cell.2011.05.022
DO - 10.1016/j.cell.2011.05.022
M3 - Article
C2 - 21663798
AN - SCOPUS:79958281553
SN - 0092-8674
VL - 145
SP - 969
EP - 980
JO - Cell
JF - Cell
IS - 6
ER -