TY - JOUR
T1 - Reward prediction errors create event boundaries in memory
AU - Rouhani, Nina
AU - Norman, Kenneth A.
AU - Niv, Yael
AU - Bornstein, Aaron M.
N1 - Funding Information:
We thank Sarah DuBrow for her instrumental consulting on this project, and Lynn Lohnas, Per Sederberg, and Rivka Cohen for fruitful conversation. This work was supported by grant W911NF-14-1-0101 from the Army Research Office (Y.N.), grant R01MH098861 from the National Institute for Mental Health (Y.N.), grant R21MH120798 from the National Institute of Health (Y.N.) and the National Science Foundation's Graduate Research Fellowship Program (N.R.).
Publisher Copyright:
© 2020 Elsevier B.V.
PY - 2020/10
Y1 - 2020/10
N2 - We remember when things change. Particularly salient are experiences where there is a change in rewards, eliciting reward prediction errors (RPEs). How do RPEs influence our memory of those experiences? One idea is that this signal directly enhances the encoding of memory. Another, not mutually exclusive, idea is that the RPE signals a deeper change in the environment, leading to the mnemonic separation of subsequent experiences from what came before, thereby creating a new latent context and a more separate memory trace. We tested this in four experiments where participants learned to predict rewards associated with a series of trial-unique images. High-magnitude RPEs indicated a change in the underlying distribution of rewards. To test whether these large RPEs created a new latent context, we first assessed recognition priming for sequential pairs that included a high-RPE event or not (Exp. 1: n = 27 & Exp. 2: n = 83). We found evidence of recognition priming for the high-RPE event, indicating that the high-RPE event is bound to its predecessor in memory. Given that high-RPE events are themselves preferentially remembered (Rouhani, Norman, & Niv, 2018), we next tested whether there was an event boundary across a high-RPE event (i.e., excluding the high-RPE event itself; Exp. 3: n = 85). Here, sequential pairs across a high RPE no longer showed recognition priming whereas pairs within the same latent reward state did, providing initial evidence for an RPE-modulated event boundary. We then investigated whether RPE event boundaries disrupt temporal memory by asking participants to order and estimate the distance between two events that had either included a high-RPE event between them or not (Exp. 4). We found (n = 49) and replicated (n = 77) worse sequence memory for events across a high RPE. In line with our recognition priming results, we did not find sequence memory to be impaired between the high-RPE event and its predecessor, but instead found worse sequence memory for pairs across a high-RPE event. Moreover, greater distance between events at encoding led to better sequence memory for events across a low-RPE event, but not a high-RPE event, suggesting separate mechanisms for the temporal ordering of events within versus across a latent reward context. Altogether, these findings demonstrate that high-RPE events are both more strongly encoded, show intact links with their predecessor, and act as event boundaries that interrupt the sequential integration of events. We captured these effects in a variant of the Context Maintenance and Retrieval model (CMR; Polyn, Norman, & Kahana, 2009), modified to incorporate RPEs into the encoding process.
AB - We remember when things change. Particularly salient are experiences where there is a change in rewards, eliciting reward prediction errors (RPEs). How do RPEs influence our memory of those experiences? One idea is that this signal directly enhances the encoding of memory. Another, not mutually exclusive, idea is that the RPE signals a deeper change in the environment, leading to the mnemonic separation of subsequent experiences from what came before, thereby creating a new latent context and a more separate memory trace. We tested this in four experiments where participants learned to predict rewards associated with a series of trial-unique images. High-magnitude RPEs indicated a change in the underlying distribution of rewards. To test whether these large RPEs created a new latent context, we first assessed recognition priming for sequential pairs that included a high-RPE event or not (Exp. 1: n = 27 & Exp. 2: n = 83). We found evidence of recognition priming for the high-RPE event, indicating that the high-RPE event is bound to its predecessor in memory. Given that high-RPE events are themselves preferentially remembered (Rouhani, Norman, & Niv, 2018), we next tested whether there was an event boundary across a high-RPE event (i.e., excluding the high-RPE event itself; Exp. 3: n = 85). Here, sequential pairs across a high RPE no longer showed recognition priming whereas pairs within the same latent reward state did, providing initial evidence for an RPE-modulated event boundary. We then investigated whether RPE event boundaries disrupt temporal memory by asking participants to order and estimate the distance between two events that had either included a high-RPE event between them or not (Exp. 4). We found (n = 49) and replicated (n = 77) worse sequence memory for events across a high RPE. In line with our recognition priming results, we did not find sequence memory to be impaired between the high-RPE event and its predecessor, but instead found worse sequence memory for pairs across a high-RPE event. Moreover, greater distance between events at encoding led to better sequence memory for events across a low-RPE event, but not a high-RPE event, suggesting separate mechanisms for the temporal ordering of events within versus across a latent reward context. Altogether, these findings demonstrate that high-RPE events are both more strongly encoded, show intact links with their predecessor, and act as event boundaries that interrupt the sequential integration of events. We captured these effects in a variant of the Context Maintenance and Retrieval model (CMR; Polyn, Norman, & Kahana, 2009), modified to incorporate RPEs into the encoding process.
KW - Computational model
KW - Context
KW - Distance memory
KW - Event boundaries
KW - Memory
KW - Recognition priming
KW - Reinforcement learning
KW - Reward prediction errors
KW - Sequence memory
UR - http://www.scopus.com/inward/record.url?scp=85086509178&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85086509178&partnerID=8YFLogxK
U2 - 10.1016/j.cognition.2020.104269
DO - 10.1016/j.cognition.2020.104269
M3 - Review article
C2 - 32563083
AN - SCOPUS:85086509178
SN - 0010-0277
VL - 203
JO - Cognition
JF - Cognition
M1 - 104269
ER -