REVISE: A Tool for Measuring and Mitigating Bias in Visual Datasets

Angelina Wang, Alexander Liu, Ryan Zhang, Anat Kleiman, Leslie Kim, Dora Zhao, Iroha Shirai, Arvind Narayanan, Olga Russakovsky

Research output: Contribution to journalArticlepeer-review

50 Scopus citations

Abstract

Machine learning models are known to perpetuate and even amplify the biases present in the data. However, these data biases frequently do not become apparent until after the models are deployed. Our work tackles this issue and enables the preemptive analysis of large-scale datasets. REvealing VIsual biaSEs (REVISE) is a tool that assists in the investigation of a visual dataset, surfacing potential biases along three dimensions: (1) object-based, (2) person-based, and (3) geography-based. Object-based biases relate to the size, context, or diversity of the depicted objects. Person-based metrics focus on analyzing the portrayal of people within the dataset. Geography-based analyses consider the representation of different geographic locations. These three dimensions are deeply intertwined in how they interact to bias a dataset, and REVISE sheds light on this; the responsibility then lies with the user to consider the cultural and historical context, and to determine which of the revealed biases may be problematic. The tool further assists the user by suggesting actionable steps that may be taken to mitigate the revealed biases. Overall, the key aim of our work is to tackle the machine learning bias problem early in the pipeline. REVISE is available at https://github.com/princetonvisualai/revise-tool.

Original languageEnglish (US)
Pages (from-to)1790-1810
Number of pages21
JournalInternational Journal of Computer Vision
Volume130
Issue number7
DOIs
StatePublished - Jul 2022

All Science Journal Classification (ASJC) codes

  • Software
  • Computer Vision and Pattern Recognition
  • Artificial Intelligence

Keywords

  • Bias mitigation
  • Computer vision datasets
  • Tool

Fingerprint

Dive into the research topics of 'REVISE: A Tool for Measuring and Mitigating Bias in Visual Datasets'. Together they form a unique fingerprint.

Cite this