Reversing the pump dependence of a laser at an exceptional point

M. Brandstetter, M. Liertzer, C. Deutsch, P. Klang, J. Schöberl, H. E. Türeci, G. Strasser, K. Unterrainer, S. Rotter

Research output: Contribution to journalArticle

255 Scopus citations

Abstract

When two resonant modes in a system with gain or loss coalesce in both their resonance position and their width, a so-called exceptional point occurs, which acts as a source of non-trivial physics in a diverse range of systems. Lasers provide a natural setting to study such non-Hermitian degeneracies, as they feature resonant modes and a gain material as their basic constituents. Here we show that exceptional points can be conveniently induced in a photonic molecule laser by a suitable variation of the applied pump. Using a pair of coupled microdisk quantum cascade lasers, we demonstrate that in the vicinity of these exceptional points the coupled laser shows a characteristic reversal of its pump dependence, including a strongly decreasing intensity of the emitted laser light for increasing pump power.

Original languageEnglish (US)
Article number4034
JournalNature communications
Volume5
DOIs
StatePublished - Jun 13 2014

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Reversing the pump dependence of a laser at an exceptional point'. Together they form a unique fingerprint.

  • Cite this

    Brandstetter, M., Liertzer, M., Deutsch, C., Klang, P., Schöberl, J., Türeci, H. E., Strasser, G., Unterrainer, K., & Rotter, S. (2014). Reversing the pump dependence of a laser at an exceptional point. Nature communications, 5, [4034]. https://doi.org/10.1038/ncomms5034