Reversible O-O Bond Scission and O2 Evolution at MOF-Supported Tetramanganese Clusters

Xin He, Andrei Iliescu, Tzuhsiung Yang, Maxx Q. Arguilla, Tianyang Chen, Heather J. Kulik, Mircea Dincă

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

The scission of the O-O bond in O2 during respiration and the formation of the O-O bond during photosynthesis are the engines of aerobic life. Likewise, the reduction of O2 and the oxidation of reduced oxygen species to form O2 are indispensable components for emerging renewable technologies, including energy storage and conversion, yet discrete molecule-like systems that promote these fundamental reactions are rare. Herein, we report a square-planar tetramanganese cluster formed by self-assembly within a metal-organic framework that reversibly reduces O2 by four electrons, facilitating the interconversion between molecular O2 and metal-oxo species. The tetranuclear cluster spontaneously cleaves the O-O bond of O2 at room temperature to generate a tetramanganese-bis(μ2-oxo) species, which, in turn, is competent for O-O bond reformation and O2 evolution at elevated temperatures, enabled by the head-to-head orientation of two oxo species. This study demonstrates the viability of four-electron interconversion between molecular O2 and metal-oxo species and highlights the importance of site isolation for achieving multi-electron chemistry at polynuclear metal clusters.

Original languageEnglish (US)
Pages (from-to)16872-16878
Number of pages7
JournalJournal of the American Chemical Society
Volume145
Issue number30
DOIs
StatePublished - Aug 2 2023
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Catalysis
  • General Chemistry
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'Reversible O-O Bond Scission and O2 Evolution at MOF-Supported Tetramanganese Clusters'. Together they form a unique fingerprint.

Cite this